Федеральное управление гражданской авиации США представило план по интеграции беспилотных летательных аппаратов и аэротакси в общее воздушное пространство. Как пишет Aviation Week, помимо прочего план предполагает организацию выделенных воздушных коридоров для летательных аппаратов этих типов.
В настоящее время много компаний занимаются разработкой как аэротакси для пассажирских перевозок в городе и между городами, так и различных классов дронов для доставки грузов, включая медикаменты и продуктовые заказы.
Появление большого количества дронов и аэротакси в воздухе может представлять серьезную угрозу как для города и его жителей, так и для других пилотируемых летательных аппаратов — самолетов и вертолетов. По этой причине уже сегодня авиационные власти занимаются проработкой новых правил полетов для аэротакси и дронов, а также созданием прототипов автоматических диспетчерских систем для управления полетами.
План, представленный Федеральным управлением гражданской авиации США, разделен на три этапа. На первом авиационные власти предполагают небольшие объемы воздушного движения аэротакси и дронов, подчиняющегося действующим правилам полетов.
На втором этапе по всей стране предлагается организовать выделенные воздушные коридоры, по которым смогут выполнять полеты только пилотируемые аэротакси и дроны. Внутри коридоров будут действовать специальные правила полетов, отличающиеся от правил движения в общем воздушном пространстве.
Предполагается, что правила будут едины на все протяжении воздушных коридоров, в каком бы классе воздушного пространства они ни проходили: G, B, C, D или E. При этом на втором этапе дроны в воздушных коридорах должны будут управляться оператором.
За пределами воздушных коридоров полеты аэротакси и дронов должны будут проходить по общим правилам и под контролем автоматизированной диспетчерской системы для дронов на высоте до 122 метров или диспетчерской службы при полете на большей высоте.
На третьем этапе предполагается задействовать автоматизацию. Наравне с пилотируемыми аэротакси и аэротакси в беспилотном режиме будут летать дроны как под управлением операторов, так и в автоматическом режиме (при этом наблюдение со стороны оператора все равно будет обязательным). При автоматизации управления воздушным движением можно будет увеличить его плотность в воздушных коридорах.
В конце прошлого года Федеральное управление гражданской авиации США опубликовало предварительную версию проекта правил дистанционной идентификации дронов. Согласно этим правилам, все зарегистрированные дроны должны быть оборудованы системой трансляции идентификатора и местоположения дрона в радиоэфир.
Василий Сычёв
И летать по заданной траектории
Инженеры разработали прототип миниатюрного орнитоптера под названием Bee++. В воздух он поднимается с помощью четырех крыльев, а его масса составляет 95 миллиграмм. Махолет управляется по тангажу, крену и рысканью и способен летать по заданной траектории. Статья с описанием робопчелы опубликована в журнале IEEE Transactions on Robotics. В последние годы становятся популярными разработки в области миниатюрных беспилотников, которые по размеру сопоставимы с насекомыми. Миниатюризация вынуждает инженеров отходить от ставшей уже классической схемы с воздушными винтами и электромоторами, так как использовать их эффективно в беспилотниках весом меньше грамма невозможно. Вместо этого инженеры используют схему орнитоптеров — летательных аппаратов, у которых подъемная сила создается за счет периодических взмахов крыльями. Для приведения их в движение обычно применяют пьезоэлектрические актуаторы, передающие усилие на крылья через механическую трансмиссию. Несмотря на то, что эта схема доказала свою работоспособность, большинство из созданных сегодня миниатюрных махолетов не имеют стабильного управления по оси рысканья. Эту проблему решили инженеры под руководством Нестора Переса-Арансибии (Nestor Perez-Arancibia) из Университета штата Вашингтон. Они построили миниатюрный орнитоптер, который управляется по всем трем осям. Микроорнитоптер, названный Bee++, представляет собой улучшенную версию орнитоптера, представленную авторами в 2019 году. Так же, как и предшественник, Bee++ имеет четыре машущих крыла, приводимых в действие индивидуальными пьезоэлектрическими актуаторами, а его масса составляет 95 миллиграмм. Сверху и снизу на корпус установлены восемь защитных стержней, которые предотвращают махолет от ударов об окружающие предметы. Питание прототип получает через провода. Несмотря на то, что крылья не имеют механизмов управления углом установки, плоскости их движения имеют заранее определенный наклон. Благодаря этому удается создавать крутящий момент по крену, тангажу и рысканью за счет изменения амплитуды движения пар крыльев. Например, для того чтобы наклонить махолет вперед, амплитуда пары крыльев, расположенных в передней части уменьшается, вследствие чего снижается генерируемая ими тяга. В результате орнитоптер наклоняется заданном направлении. Аналогичным образом происходит управление по оси крена с помощью боковых пар крыльев. Для поворотов по оси рысканья изменяют амплитуду движения пар крыльев, расположенных по диагонали. Набор или снижение высоты происходит при увеличении или снижении частоты взмахов всех четырех крыльев. Инженерам удалось увеличить частоту движений крыльями, что привело к увеличению тяги на 125 процентов по сравнению с предыдущей версией робопчелы, которая могла лишь держаться в воздухе, но не имела достаточной тяги для управления рысканьем. В испытаниях робопчела продемонстрировала хорошую управляемость по оси рысканья и способность разворачиваться на угол 90 градусов за 50 миллисекунд со скоростью около 1800 градусов в секунду, что сравнимо с характеристиками мухи дрозофилы. Также робопчела успешно продемонстрировала способность удерживать положение корпуса по оси рысканья при одновременном перемещении по сложной траектории. По словам разработчиков в будущем в созданную ими платформу можно будет интегрировать сенсоры, которые позволят системе управления робопчелы ориентироваться в пространстве. https://www.youtube.com/watch?v=m9lLO1QpdcE Ранее мы рассказывали об инженерах из США, создающих крупные орнитоптеры, которые внешне похожи на птиц. Для этого они используют чучела настоящих животных. Корпус одного из прототипов покрыт перьями кеклика, а в его передней части находится голова чучела этой птицы, а во втором беспилотнике используются настоящие крылья голубя.