Американские и китайские химики разработали новый солнечный электролизер — устройство для получения водорода из воды при помощи солнечной энергии. Ученые намеренно отказались от использования дорогостоящих материалов: в основе электролизера — катализаторы из наностержней оксида кобальта и перовскитный солнечный элемент, которые заключены в упаковочную пленку. Эффективность преобразования солнечной энергии в водород — 6,7 процента. Результаты исследования опубликованы в журнале ACS Nano.
Один из главных недостатков солнечных элементов — прерывистый характер работы. Мощность, выдаваемая солнечной электростанцией, зависит от сезона, времени суток и погоды. Поэтому для эффективного использования солнечной энергетики нужно научиться запасать энергию в светлое время суток, чтобы затем использовать ее, например, ночью.
Проблему можно решить совмещением двух технологий: фотовольтаики и электрокаталитического получения водорода. В таком устройстве электричество, которое выработала солнечная батарея, сразу же используется для выделения водорода из воды путем электролиза. Далее водород можно использовать для получения электричества в темное время суток, а также хранить и перевозить.
Энергия в таком устройстве преобразуется дважды: сначала энергия падающих фотонов переходит в электрическую энергию, а затем — в энергию химических связей молекулы водорода. Потери происходят на обоих этапах, поэтому эффективность таких устройств пока не очень высока: лучшие показывают эффективность в 16–19 процентов.
Обычно такие устройства изготавливают из кремниевых солнечных элементов, а в качестве катализаторов используют металлы платиновой группы — платину, иридий и рутений — и их соединения. Все эти материалы достаточно дороги, что затрудняет дальнейшее масштабирование солнечно-водородных систем.
Химики под руководством Цзюнь Лоу (Jun Lou) из Университета Райса впервые разработали солнечный электролизер, в котором не используются дорогостоящие материалы: солнечный элемент сделан из свинцово-галогенидного перовскита CH3NH3PbI3, а катализатор для электролиза воды — из наностержней оксида кобальта.
Перовскит выбрали еще и потому, что такие элементы демонстрируют более высокие значения напряжения холостого хода, чем кремниевые — в случае электролиза воды это преимущество очень важно. Наностержни оксида кобальта, в свою очередь, — это материал с большой удельной площадью поверхности, который наносят на электроды для улучшения эффективности электролиза.
Наностержни синтезировали гидротермальным методом из раствора нитрата кобальта и мочевины, а затем дополнительно допировали фосфором: для этого их нагрели в печи вместе с гидрофосфатом натрия при 300 градусах Цельсия. Добавка фосфора улучшает электрокаталитическую активность стержней, позволяя проводить электролиз при более низких значениях потенциала.
Авторы намеренно отказались от использования дорогостоящих и редких материалов везде, где это было возможно. Например, в перовскитном солнечном элементе они заменили золотой катод на катод из угля, а также отказались от полимерного слоя между активным слоем и катодом. Этот слой изготавливают из полимера, который пропускает только дырки, но не пропускает электроны. Синтез подобных полимеров очень сложен, поэтому отказ от них делает устройство значительно дешевле.
Кроме того авторы впервые поместили перовскитный солнечный элемент непосредственно в раствор электролита. Это позволило снизить омические потери и добиться лучшей эффективности устройства. Вода для перовскитных солнечных элементов очень опасна — даже небольшие ее количества воды приводят к необратимой деградации таких устройств. Поэтому солнечный элемент нужно было надежно инкапсулировать — здесь авторы тоже не отступили от своих принципов и использовали коммерчески доступную упаковочную пленку Surlyn. Их эксперименты показали, что, нагрев такую пленку до 150 градусов Цельсия в течение нескольких секунд, можно получить полностью герметичное покрытие, которое надежно предохраняет солнечный элемент от влаги.
Эффективность преобразования солнечного света в электричество составила 10,6 процентов, а суммарная эффективность электролизера — 6,7 процентов. Это пока меньше, чем у лучших электролизеров на кремнии и металлах платиновой группы, однако авторы полагают, что в будущем их электролизер можно будет улучшить — например, используя другой состав перовскитного материала или экспериментируя с составом катализатора.
Фотоэлектролиз
планируют использовать в том числе для
обеспечения энергией космических
кораблей. Для этих целей голландские
химики разработали
и испытали ячейку, которая может работать
в условиях микрогравитации.
Наталия Самойлова
Ученые из Великобритании, Италии, Новой Зеландии и Норвегии разработали небольшой солнечный генератор на основе фотосинтезирующих цианобактерий. Эксперимент показал, что такой источник энергии может обеспечивать работу платы с микропроцессором на протяжении полугода. Статья опубликована в Energy & Environmental Science.