Материаловеды разработали новый подход к нанесению цветных двухслойных поверхностей, в которой нижний полимерный слой увеличивает отражение солнечного света в инфракрасном диапазоне, при этом в качестве верхнего слоя можно использовать латексную краску. С помощью такого подхода ученые смогли достичь для черной краски понижения температуры на 15,6 градуса Цельсия в закрытых условиях и на 6,4 градуса на открытом воздухе. Статья опубликована в журнале Science Advances.
Инженеры часто используют энергозатратные способы для охлаждения зданий, машин и серверов. В США, например, 15 процентов всей энергии для домашнего использования затрачивается на охлаждение домов. Более того, эти охладительные установки самостоятельно производят тепла больше, чем охлаждают, и используют реагенты, разрушающие озоновый слой или увеличивающие количество парниковых газов.
Охлаждение за счет излучения с помощью специальных покрытий считается одним из перспективных подходов. Высокая отражающая способность поверхности уменьшает нагрев от солнечного излучения, а ее большая излучательная способность позволяет эффективно отводить лишнее тепло. Такой способ позволяет поверхности и скрываемому ей объему оставаться холодными даже под прямыми солнечными лучами. Например, ученые используют металлические зеркала или белую краску с высокой отражающей способностью, но в реальном применении они ограничивают возможные цвета зданий и лишают их эстетики и функциональности. Более того, отражаемый свет может раздражать глаза проходящих мимо людей. По этой причине в последнее время получили развитие окрашенные излучательные охладители, в которых часть видимого света поглощается краской для получения желаемого цвета, а остальная часть солнечного света — в частности, область между ближним и коротковолновым ИК, отвечающая за 51 процент солнечного света, — отражается. В таких системах за стандарт отражателя волн ИК-диапазона принято считать диоксид титана, но он поглощает в коротковолновой части ИК диапазона, а потому не до конца выполняет свои функции отражателя теплового излучения. Проблема охлаждения такими системами состоит в масштабировании многослойных структур на пористые и текстурные поверхности сложной формы домов и автомобилей.
Юань Ян (Yuan Yang) с коллегами разработал двухслойное красочное покрытие с излучательным охладителем из пористого сополимера винидиленфторида и гексафторопроилена (ПВдФ-ГФП) и сравнил его с диоксидом титана. Такие покрытия визуально практически не отличаются от обычной краски, но позволяют понизить температуру на 15,6 градуса Цельсия относительно чистой краски.
Чтобы получить такое покрытие, ученые сделали раствор полимера в воде и ацетоне, нанесли его на поверхность, а затем покрыли слоем цветной краски. Существующие краски выбраны потому, что они уже обладают хорошей излучательной способностью. Ученые пытались подобрать состав и структуру покрытия, чтобы отражение солнечного света было максимальным. Сначала они сравнили отражение разных длин волн света от 150-микрометрового монослоя латексной краски из пигмента или красителя в полимерной матрице и двухслойное покрытие, где 145 микрометров занимал ПВдФ-ГФП, а пять микрометров слой краски. И хотя разница в количестве краски была большой, такого количества все равно достаточно, чтобы сохранять свои способности отражения в видимой части спектра и тем самым давать тот же самый цвет. Стоит отметить, что авторы тестировали краску на латексной основе, поэтому неизвестно, как с покрытием будут сочетаться другие типы красок.
Материаловеды рассмотрели два типа материалов для нижнего рассеивающего слоя: диоксид титана и вышеуказанный полимер. Они нанесли 500 микрометров полимера с пористостью в 50 процентов, а диоксид титана слоем в 250 микрометров, чтобы сравнивать одинаковые объемы рассеивателей. На образцы наносились одинаковые слои краски с толщиной в 55, 16, 40 и 40 микрометров для черной (периленовый черный краситель), синей (2066-30 Big Country Blue), красной (2086-30 Rosy Blush) и желтой латексной краски (2021-30 Sunshine) соответственно. При сравнении таких покрытий с монослоем чистой краски оба образца выглядели практически так же, однако увеличилась их отражательная способность в ближнем и коротковолновом ИК, при этом в образце с полимерным нижним слоем коэффициент отражения был больше, чем с диоксидом титана. Разница между ними достигается за счет рассеивания волн ИК диапазона на больших микропорах полимерного материала, а не на маленьких кристаллах диоксида титана. Такой эффект рассеивания позволяет достичь матовости покрытия и отсутствия блеска при любом угле падения света. Вдобавок к этому, двухслойное покрытие обладает высокой термической излучательной способностью из-за своей полимерной структуры.
Ученые продемонстрировали, что улучшенные отражающие и излучательные свойства ведут к существенному охлаждению поверхности в течение дня. Для этого они поместили однослойные и двухслойные образцы с диоксидом титана и полимером на подложку из пенопласта и накрыли конструкцию конвекционным щитом из прозрачного полиэтилена, чтобы достичь одинаковых окружающих условий. В случае слоев на основе черной краски полимер и диоксид титана снизили температуру на 15,6 и 13,2 градуса Цельсия относительно однослойной черной краски, для остальных цветов разница оказалась меньше: синяя — на 6,6 и 4,3; красная — на 3 и 1,8; желтая — на 7,3 и 5,2 градуса Цельсия, соответственно. Такие значения хорошо совпадают с теоретической оценкой конвективного коэффициента теплопередачи в 5-7 ватт на квадратный метр на кельвин. Чтобы приблизить условия к более реальным, материаловеды провели эксперимент без конвекционного щита, полимерный подслой снизил температуру поверхности от 2,6 градуса Цельсия для красной краски до 6,4 — для черной. Использование таких красок на зданиях, автомобилях и других наземных объектах позволит не только сохранить желаемый цвет, но и ощутимо понизить температуру поверхности. Однако о применении пока что говорить рано — авторы статьи не привели оценок экономической выгоды таких поверхностей в сравнении с обычными красками и не указали, каким образом стоит наносить слои на поверхности.
Чтобы еще больше повысить охлаждающие способности покрытий, ученые предложили оптимизировать такое покрытие за счет красок, которые в отличие от используемых не содержат пигменты, рассеивающие и поглощающие свет в ближнем ИК диапазоне. Идеальное верхнее покрытие по их мнению должно показывать высокую избирательность поглощения в видимом диапазоне при минимальном поглощении в ближнем ИК диапазоне. Например, такими свойствами обладает пленка диэлектрика с покрытием из металлических хлопьев. Минимального рассеяния света ближнего ИК диапазона можно достичь с помощью пигментов малых размеров (до ста нанометров) или органических красителей, растворенных в полимерах. Материаловеды решили использовать краситель судановый синий (II), растворенный в полимере, из которого сделан нижний слой, и получили охлаждение в коробе на 12 градусов, а в открытых условиях на 6 градусов Цельсия.
Специальная краска может не только охлаждать поверхность. Четыре года назад физики представили краску на основе полупроводниковых термоэлектрических материалов, чтобы преобразовывать остаточное тепло на поверхностях зданий в электричество.
Артем Моськин
И реагировать на них движениями
Американские инженеры связали на автоматическом станке свитеры для роботов, которые помогают ощущать прикосновения с помощью вшитых датчиков нажима. Свитеры пригодятся, чтобы управлять движениями роботов на производстве. Работа доступна на arXiv.org. Для работы на производстве с людьми, роботам нужно быть очень осторожными, чтобы случайно не травмировать человека. Есть разные способы сделать роботов безопасными, например прикреплять к ним мягкие подушки. Другая идея — научить роботов быстро определять контакт и отодвигаться от человека. В отличие от людей, у роботов нет кожи, но для них можно сделать другую систему для распознавания ощущений из жестких или эластичных материалов, или даже одежду из текстиля, если встроить в нее датчики прикосновений. Одежду можно быстро изготавливать на ткацком станке в промышленных масштабах, и надевать на роботов разных форм и размеров. Группа инженеров из Университета Карнеги под руководством Джеймса МакКанна (James McCann) и Ян Вэньчжэня (Yuan Wenzhen) создала свитеры для роботов, которые могут надежно определять прикосновения. По словам авторов, обычно у текстильных сенсоров есть проблема: они быстро деформируются и перестают надежно работать. Исследователи попробовали с этим справиться, связав свитеры из трех слоев пряжи. Верхний и нижний слой сделаны из обычного нейлона, на котором чередуются широкие и узкие полосы. Широкие полосы сотканы из полиэстеровой металлизированной пряжи, которая хорошо проводит электричество, а узкие полосы изолятора сделаны из акрила. Средний слой — это сетка из района (искусственного шелка). Чем она тоньше, тем выше чувствительность свитера к легким прикосновениям, и наоборот — плотный средний слой подходит для сильных нажатий. Слои ткани с помощью пуговиц с проводами соединяются с устройством для считывания сопротивления, и вместе с ним превращаются в электронную схему. Когда кто-то дотрагивается до свитера, верхний и нижний слои ткани соприкасаются через отверстия в районовой сетке, и сопротивление в системе уменьшается. По сопротивлению можно определить силу нажатия. Инженеры протестировали, насколько надежно устройство определяет силу и место контакта со свитером. Первая серия экспериментов проверяла, как эффективность сенсоров меняется со временем. Эксперименты включали 42 секунды контакта с сенсорами по 20-30 раз на протяжении 4 дней. Авторы не приводят точные цифры результатов, но утверждают что сенсоры показывали стабильные результаты по определению места контакта все 4 дня, с небольшими погрешностями в конце эксперимента. Также исследователи протестировали точность сенсоров на плоской и изогнутой поверхности. На плоской поверхности по сопротивлению датчиков можно было точно определить силу нажатия. На изогнутой поверхности корреляция между сопротивлением и силой нажатия сохранилась, но выросло ее стандартное отклонение. Таким образом, сложность поверхности негативно повлияла на точность определения нажатия. Наконец, инженеры проверили эффективность чувствительных свитеров на роботах. Они надели свитер на робота Kuri, который должен был повернуть голову в ответ на прикосновение. В будущем технологию RobotSweater можно использовать, чтобы обучать роботов: например, похлопать по плечу в качестве похвалы. Пока инженеры показали, как свитеры могут пригодиться на производстве: например, промышленный робот в свитере останавливается и меняет направление движения в ответ на прикосновения. https://www.youtube.com/watch?v=YGUV1dHuCRc Прикосновения может определять не только одежда для роботов, но и искусственная кожа, которую разработала группа ученых из Стэнфордского университета. Пока кожу испытали на крысах, но авторы планируют в будущем встроить ее в человеческие протезы, чтобы улучшить их чувствительность.