Функционирует при финансовой поддержке Федерального агентства по печати и массовым коммуникациям (Роспечать)

Ранние зародыши мыши не смогли полноценно развиться в космосе

Lei et al. / National Science Review, 2020

Китайские ученые отправили в космос более тысячи мышиных эмбрионов на стадии двух клеток, чтобы проследить за их развитием. Оказалось, что на орбите клетки эмбрионов хуже делятся и дифференцируются, чем на Земле. Судя по всему, дело в радиации: если на Земле облучить зародыши той же дозой, что и в космосе, то они накапливают двунитевые разрывы ДНК и хуже развиваются. Возможно, это объясняет, почему крысам до сих пор не удалось размножиться в космических экспериментах. Исследование опубликовано в журнале National Science Review.

Ученые уже неоднократно отправляли в космос самых разных животных, в том числе и на эмбриональных стадиях. Хотя многие беспозвоночные и позвоночные продолжали успешно развиваться даже в невесомости, про млекопитающих до сих пор неизвестно, насколько это возможно. Попытки заставить самцов и самок крыс размножаться на орбите пока ни к чему не привели. Дело, судя по всему, не в производстве половых клеток — по крайней мере, после возвращения из космоса грызуны способны стать отцами. Качество спермы тоже в космосе не меняется.

Группа ученых под руководством Энькуя Дуаня (Enkui Duan) из Института зоологии Китайской академии наук предположила, что проблемы могут возникнуть на стадии раннего зародышевого развития. Чтобы это проверить, исследователи разработали инкубатор для космических полетов. В земных условиях он позволил культивировать эмбрионы до преимплантационной стадии (бластоцисты): около трети выращенных в нем зародышей после подсадки самкам развились в полноценных мышат.

В апреле 2016 года Китай запустил спутник SJ-10, и за 12 часов до пуска на него установили инкубатор с мышиными эмбрионами на стадии двух клеток. Камера микроскопа фотографировала их раз в 4 часа, а через 64 часа их зафиксировали, чтобы остановить развитие и проанализировать экспрессию генов уже по возвращении на Землю.

На Земле ученые собрали из инкубатора 1184 зафиксированных зародыша. Из них 856 развились до стадии морулы (многоклеточного плотного шара) или бластоцисты (шара с полостью внутри). Однако бластоцист в космосе получилось почти в два раза меньше, чем в том же инкубаторе на Земле (34,3 процента против 60,2). Таким образом, переход из морулы в бластоцисту в космосе оказался нарушен.

Когда исследователи начали изучать качество полученных бластоцист, то заметили, что в них меньше клеток, чем в аналогичных земных эмбрионах (в среднем 41,5 против 51,6). Кроме того, оказалось, что в них отличается экспрессия основных маркеров, характерных для этой стадии. Среди поверхностных клеток бластоцист, развившихся в космосе, нашлось вдвое больше таких, которые застряли в процессе дифференцировки: они экспрессировали белки Oct4 и Cdx2, характерные для внутренней клеточной массы. Это означает, что проблемы у зародышей начались на уровне деления и дифференцировки клеток.

В причинах этих проблем исследователи заподозрили космическую радиацию. Чтобы выяснить, оказала ли она влияние на ДНК зародышей, они измерили количество двунитевых разрывов в клетках бластоцист: у тех, что летали в космос, их оказалось почти в два раза больше.

Затем авторы работы решили выяснить, что влияет на развитие мышиных эмбрионов сильнее: радиация или отсутствие гравитации. Уже на Земле они собрали новых комплект зародышей и на одни подействовали дозой излучения (которая была приблизительно равна той, что эмбрионы получили за время полета — 0,5-2 мГрей), а другие культивировали во вращающемся сосуде. Оказалось, что в условиях невесомости до бластоцисты дожило чуть меньше зародышей, чем обычно (65,4 процента против 72,9), однако под действием излучения эффект был сильнее — выжили всего 45,7 процента при максимальной дозе. Кроме того, в условиях невесомости у зародышей не возникло двунитевых разрывов, а под действием излучения они появлялись по всей бластоцисте. В итоге облученные зародыши хуже прижились в организмах матерей: рождаемость упала до 7-21 процента (в зависимости от дозы) по сравнению с 32,6 процентами в контрольной группе.

На основании своих данных исследователи заключили, что размножаться в космосе млекопитающим мешает радиация, которая снижает и без того невысокую выживаемость зародышей. Тем не менее, авторы работы отмечают, что едва ли радиация единолично виновата во всех бедах развивающихся эмбрионов: количество полноценных бластоцист, которые сформировались на орбите, все равно оказалось ниже, чем на Земле под действием соответствующей дозы излучения. Это означает, что изменения гравитации тоже играют какую-то роль в развитии эмбрионов, просто оказывают не такое сильное воздействие.

Ранее мы писали о том, что для мозга крыс радиация, судя по всему, оказалась безвредной. А вот мыши, попав в космос, начали описывать странные круговые траектории.

Полина Лосева

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.