Японские ученые не нашли существенных изменений в репродуктивной функции мышей после месяца жизни на МКС. Исследователи обнаружили, что в их сперматозоидах работают те же гены, что и у «земных» мышей, они так же подвижны и фертильны. Кроме того, они не нашли никаких отклонений в росте и развитии ни у детей, ни у внуков подопытных животных. Работа опубликована в журнале Scientific Reports.
Полеты в космос связаны со множеством рисков. Это и стресс во время взлета и посадки, и состояние невесомости, и космическая радиация — все они могут влиять на подвижность, фертильность и состояние ДНК сперматозоидов.
Раньше в космос уже летали крысы, и ученые обнаружили, что они стали производить меньше сперматозоидов. В другом эксперименте в космос отправили замороженные и высушенные сперматозоиды мышей. По возвращении они смогли оплодотворить яйцеклетки, но исследователи нашли в них следы повреждения радиацией.
Теперь Такафуми Мацумура (Takafumi Matsumura) и ученые из Университета Осаки разработали новый способ исследовать влияние пребывания в космосе на репродуктивной способность мышей. Они отправили на МКС две группы животных: одна провела 35 дней в условиях микрогравитации (то есть фактически в невесомости), а для другой с помощью центрифуги искусственно создали условия гравитации, аналогичные земным. Третья группа жила на Земле и служила контролем.
После возвращения животных из космоса, авторы работы проверили состояние их половых желез. Они обнаружили, что вспомогательные железы — предстательная железа и семенные пузырьки — уменьшились в размерах у обеих «космических» групп по сравнению с контрольной. Тем не менее, гистологически они ничем не отличались, и профиль экспрессии генов также совпал у всех трех групп, не демонстрируя никаких признаков патологии.
Затем исследователи изучили состояние сперматозоидов у подопытных мышей. У всех трех групп они не отличались морфологически. Сперматозоиды обеих «космических» групп животных немного медленнее плавали по прямой, но в остальном сохраняли подвижность. Их ДНК была такой же длины, что и у «земных» мышей — то есть не несла дополнительных разрывов. Наконец, сперматозоиды всех трех групп с одинаковым успехом — около 87 процентов — оплодотворили мышиные яйцеклетки.
Эмбрионы, которые получились из этих яйцеклеток, ученые подсадили самкам, и те родили здоровых мышат. Ни по внешним признакам, ни по скорости роста они не отличались друг от друга. Их скрестили друг с другом и получили третье поколение мышей, в котором исследователи также не обнаружили следов космического прошлого их дедов.
Авторы статьи заключают, что никакого влияния микрогравитации и полета в космос на репродуктивную способность мышей им обнаружить не удалось — ни внешнего, ни на молекулярном уровне. Правда, они не исключают, что эффект может проявиться на другом уровне — эпигенетическом, как было в недавнем эксперименте с астронавтами-близнецами, один из которых отправился на МКС, а второй в качестве контроля жил на Земле. Подробнее об этой истории читайте в нашем материале «Эксперимент близнецов».
Полина Лосева
Исследование провели на личинках дрозофил
Японские исследователи в экспериментах с дрозофилами установили механизм влияния на нейропластичность фермента убиквитинлигазы, функции которого нарушены при синдроме Ангельмана. Как выяснилось, этот фермент в пресинаптических окончаниях аксонов отвечает за деградацию рецепторов к костному морфогенетическому белку, за счет чего устраняются ненужные синапсы в процессе развития нервной ткани. Отчет о работе опубликован в журнале Science. Синдром Ангельмана представляет собой нарушение развития, которое проявляется умственной отсталостью, двигательными нарушениями, эпилепсией, отсутствием речи и характерной внешностью. Его причиной служат врожденные дефекты фермента убиквитинлигазы Е3А (Ube3a), который присоединяет к белкам убиквитин, влияющий на их судьбу в клетке, в том числе деградацию. При синдроме Ангельмана сниженная активность Ube3a нарушает синаптическую пластичность в процессе нейроразвития, в частности элиминацию ненужных синапсов. Повышенная активность этого фермента, напротив, приводит к неустойчивости сформировавшихся синапсов и, как следствие, к расстройствам аутического спектра. Исследования постсинаптических функций Ube3a показали, что он играет роль в нейропластичности, в частности формировании дендритных шипиков. При этом, по данным иммунохимических и электронно-микроскопических исследований, в коре мозга мыши и человека этот фермент экспрессируется преимущественно пресинаптически. Учитывая высокую эволюционную консервативность Ube3a, сотрудники Токийского университета под руководством Кадзуо Эмото (Kazuo Emoto) использовали для изучения его пресинаптических функций сенсорные нейроны IV класса по ветвлению дендритов (C4da) личинок плодовой мухи дрозофилы. Число дендритов этих нейронов резко сокращается (происходит их прунинг) в первые 24 часа после образования куколки, а на последних стадиях ее развития дендриты разветвляются вновь уже по взрослому типу. Используя флуоресцентные метки различных биомаркеров нейронов, исследователи показали, что в ходе этого процесса ремоделированию подвергаются не только дендриты, но и пресинаптические окончания аксонов. Попеременно отключая разные компоненты участвующих в этих процессах молекулярных комплексов, ученые убедились, что для элиминации синапсов под действием сигнального пути гормонов линьки экдизонов необходима только Ube3a, но не куллин-1 E3-лигаза, участвующая в прунинге дендритов. Дальнейшие эксперименты с применением флуоресцентных меток и РНК-интерференции показали, что Ube3a активно транспортируется из тела нейрона в аксон двигательным белком кинезином со средней скоростью 483,8 нанометра в секунду. Создав мутантов с дефектами в различных участках Ube3a, авторы работы выяснили, что связанные с синдромом Ангельмана мутации D313V, V216G и I213T в среднем домене фермента, содержащем тандемные полярные остатки (TPRs), препятствуют его связи с кинезином и транспорту из тела нейрона в аксон. Как следствие, нарушается элиминация ненужных синапсов. Изменения в N-концевом цинк-связывающем домене AZUL и C-концевом HECT влияли на эти процессы в значительно меньшей степени. Ube3a принимает участие в убиквитинировании многих клеточных белков. Чтобы выяснить, какой из них опосредует элиминацию синапсов, авторы работы вызывали в нейронах избыточную экспрессию разных белков-мишеней Ube3a с целью насытить этот фермент и таким образом заблокировать его действие. Оказалось, что выраженные дефекты элиминации синапсов возникают при избыточной экспрессии тиквеина (Tkv) — пресинаптического рецептора к костному морфогенетическому белку (ВМР); прунинг дендритов при этом не затрагивается. Исследование нормальной экспрессии Tkv с помощью флуоресцентных меток показало, что ее уровень значительно снижается через восемь часов после начала формирования куколки. У мутантов, лишенных Ube3a, этого не происходило. Выключение гена tkv или другого компонента сигнального пути BMP — mad — восстанавливало элиминацию синапсов у таких мутантов, то есть за нее отвечает именно этот сигнальный путь. Это подтвердили, восстановив элиминацию синапсов у мутантов без Ube3a антагонистом BMP LDN193189, а также экспрессией белков Glued-DN или Dad, которые подавляют сигнальную активность Mad. Искусственное повышение пресинаптической экспрессии Ube3a в нейронах C4da вызывало массированную преждевременную элиминацию сформировавшихся синапсов и общее уменьшение синаптической передачи у личинок третьего возраста. Это происходило из-за чрезмерного подавления сигнального пути BMP. Таким образом, дефекты убиквитинлигазы Ube3a, лежащие в основе синдрома Ангельмана, приводят к избыточной активности сигнального пути BMP, вследствие чего не происходит устранение ненужных синапсов в процессе развития нервной системы. Этот сигнальный путь может послужить мишенью для разработки новых методов лечения этого синдрома, а возможно и расстройств аутического спектра, считают авторы работы. В 2020 году американские исследователи сообщили, что им удалось предотвратить развитие синдрома Ангельмана у мышей с мутацией материнской копии гена UBE3A. Для этого они с помощью системы CRISPR/Cas9 инактивировали длинную некодирующую РНК UBE3A-ATS, которая подавляет экспрессию отцовской копии UBE3A.