Загрузка галереи
Биомеханики измерили низкочастотные колебания бактерии с помощью оптикомеханического резонатора. Также ученые построили теоретическую модель связанных затухающих гармонических осцилляторов и определили, каким образом колеблется бактерия на поверхности резонатора. Статья опубликована в журнале Nature Nanotechnology.
Ученые измеряют колебательные свойства молекул методами оптического неупругого рассеяния и оптического поглощения для определения их химического строения, что особенно интересно для биологических молекул и структур. Давно существуют теоретические предсказания существования низкочастотных колебательных мод в нуклеиновых кислотах, белках, вирусах и бактериях. С помощью этих мод физики могут получать информацию о гибкости биологических объектов, которая чувствительна к конформационным изменениям, комплексообразованию и изменению условий окружающей среды. Известно, например, что многие болезни напрямую связаны с гибкостью молекул и биологических структур.
Загрузка галереи
Биофизики уже проводили численный расчет основной резонансной частоты для сферической частицы на поверхности в зависимости от радиуса методом конечных элементов. Собственная частота колебаний сферических частиц падает с увеличением радиуса. Для наноструктур вирусов и белков такая частота по теоретическим оценкам — сотни и десятки гигагерц соответственно. Однако пока что ученым не удалось измерить собственную частоту колебаний вирусов распространенными методами оптического неупругого рассеяния и поглощения.
Биомеханики использовали нано и микрорезонаторы для того, чтобы определить массу биочастиц, а с помощью микрокантилевера — иглы атомно-силового микроскопа — у них получилось измерить жесткость. За счет своей массы частица уменьшает резонансную частоту резонатора в меньшую сторону, в то время как жесткость частицы наоборот незначительно повышает. В этом приближении биочастица статичная и игнорирует термическое движение, связанное с низкочастотными колебаниями
Эдуард Хиль-Сантос (Eduardo Gil-Santos ) со своими коллегами предложил использовать для определения низкочастотных колебаний одной бактерии ультравысокочастотный механический резонатор, который в состоянии достичь частоту колебаний биочастиц размером в десятки и сотни нанометров. В частности, они измерили частоту колебаний эпидермального стафилококка (Staphylococcus epidermidis) на оптомеханических дисках. Ученые выбрали эти диски из-за того, что они имеют ультравысокую резонансную частоту, большую площадь чувствительной поверхности, повышенную чувствительность к сдвигу за счет мод шепчущей галереи и малые механические потери за счет радиальных дышащих мод.
Загрузка галереи
Оптикомеханический резонатор — система, в которой колебания вещества связываются с электромагнитным полем. Биомеханики сконструировали такие резонаторы из многослойной структуры полупроводника арсенида галлия с прослойкой Al0,8Ga0,2As, которую удаляли выдерживанием в плавиковой кислоте для образования характерной ножки. Они подключили к этому резонатору волновод и соединили систему с инфракрасным лазером. Ученые создали два резонатора толщиной в 320 нанометров с радиусами в пять и два с половиной микрометра, основная колебательная радиальная мода которых составила 272 и 546 мегагерц соответственно.
Одну бактерию эпидермального стафилококка нанесли на поверхность электронапылением с последующей отгонкой растворителя. Для широкого диска с высокой частотой колебаний добавление бактерии привело к массовому смещению резонансной частоты. Однако для узкого диска в низкой частотой ситуация в корне меняется: изначальный узкий пик резонансного колебания расщепился на два широких пика. Этот эффект похож на расщепление частоты, когда связываются практически идентичные механические резонаторы, а уширение пиков связано с увеличением механических потерь из-за наличия бактерии на поверхности.
Загрузка галереи
Для описания этого эффекта ученые разработали теоретическую модель одномерного затухающего гармонического осциллятора связанного с N гармоническими осцилляторами, которые могут колебаться в направлениях N-мерного пространства, образованного собственными векторами колебаний добавленной частицы. Сложность решения экспоненциально растет с ростом количества добавленных осцилляторов, а потому был рассмотрен случай, в котором N равен двум. Биомеханики меняли соотношение резонансной частоты детектора и аналита и получили спектр колебания этой системы. Чтобы подтвердить его правильность, они провели моделирование методом конечных элементов системы диска и бактерии, относительное положение между ними перенесено из электронной микрофотографии. Плотность бактерии была получена из измерения частоты с помощью микрокантилевера — 920 миллиграмм на кубический сантиметр. Использовав плотность и зафиксировав коэффициент Пуассона в значении 0,35, исследователи получили четыре возможных типа колебания: изгиб, два типа сфероидальных колебаний и колебания перпендикулярные плоскости диска. Экспериментальные данные соответствуют колебаниям системы при модуле Юнга бактерии в 5,5 гигапаскалей, резонансные колебания расщепляются на два широких пика из-за колебаний в фазу и противофазу с радиальными колебаниями диска, а движения молекулы сочетают колебания изгиба и квадрупольного сфероидального колебания.
Загрузка галереи
Чтобы проверить применимость нового метода для изучения процессов с бактериями, ученые измерили спектр колебаний при различных условиях влажности атмосферы. Масса и вязкоупругие свойства биополимеров сильно зависят от уровня влажности, однако очень мало известно о влиянии воды на микробные частицы: при изменении уровня влажности с практически нуля до 80 процентов масса бактерии увеличивается на 20 процентов, а жесткость бактерии в первую очередь зависит от клеточной стенки, состоящей отчасти из полимера пептидогликана. Из спектра стало понятно, что при увеличении влажности, положения резонансных пиков смещаются за счет увеличения массы частицы, а сами пики становятся шире. Авторы объяснили это нарастающими механическими потерями из-за уменьшения жесткости бактерии.
Новое использование оптикомеханических резонаторов позволит лучше разобраться с процессами в биологических структурах. Три года назад японские физики научили раскрашивать изображения иглу атомно-силового микроскопа в зависимости от ее частоты колебаний, частоты внешнего источника колебаний и сдвига частоты при контакте с поверхностью.
Артем Моськин
Устройство необходимо для разгона электронов в линейном ускорителе
Ученые из Института ядерной физики имени Будкера СО РАН создали ключевой элемент будущего источника синхротронного излучения СКИФ — клистрон, устройство, которое будет обеспечивать линейный ускоритель СКИФа током высокой мощности и сверхвысокой частоты, сообщили пресс-службы института и Минобрнауки РФ. Разработка стала вынужденным шагом: ученые планировали закупить клистроны в Японии, но из-за санкций фирма-подрядчик разорвала контракт. Проект «Сибирского кольцевого источника фотонов» (СКИФ) был утвержден в октябре 2019 года. Предполагается, что он будет генерировать синхротронное излучение с энергией фотонов от 1 до 100 килоэлектронвольт, которое будет использоваться для высокоточного рентгеноструктурного анализа, то изучения характера рассеяния излучения в толще образца. Такого рода «просвечивание» необходимо для многих задач в физике твердого тела, для разработки новых материалов, биомедицинских исследований. Подробнее об этом мы писали в материале «Больше синхротронов». Первый элемент СКИФа — линейный ускоритель (линак), который должен будет выдавать поток электронов с энергиями в 200 мегаэлектронвольт. Частицы разгоняются в нем благодаря переменным электрическим полям высокой частоты в СВЧ-резонаторах. В свою очередь, для питания СВЧ-резонаторов нужен электрический ток сверхвысокой частоты. Устройство, которое для этого предназначено, называется клистроном. В апреле 2023 года физики ИЯФа проверили в действии «первую ступень» линака, разогнав в нем электроны до энергии 30 мегаэлектронвольт. Однако, как пояснил N + 1 завлабораторией ИЯФ Алексей Левичев, в этом эксперименте использовался клистрон японской фирмы Canon, который институт успел получить до введения санкций. По его словам, для полноценной работы линака требуется четыре клистрона — три работающих и один резервный. Поскольку клистроны с нужными параметрами выпускают только в США, Франции и Японии, физикам пришлось создавать устройство самостоятельно. Клистрон представляет собой разновидность электронной лампы. В нем есть катод, где формируется поток электронов. Затем этот поток ускоряется и попадает во входной резонатор, где под действием электрического поля он становится дискретным — разбивается на сгустки, которые, в свою очередь, наводят ток сверхвысокой частоты в выходном резонаторе. Затем электроны «ловит» коллектор и цикл повторяется. Таким образом из непрерывного тока получают ток с частотой колебаний около 3 гигагерц. При испытаниях клистрона, созданного в ИЯФе была получена мощность в 50 мегаватт. По словам, директора ИЯФ Павла Логачева, создать собственный клистрон устройство они смогли благодаря благодаря тому, что Национальная ускорительная лаборатория SLAC подарила институту клистрон, и физики научились с ним работать. По его мнению, эта технология в дальнейшем будет востребована для других ускорительных установок в России — для синхротрона, источника комптоновского излучения в Сарове, источника нейтронов в Дубне. По словам Левичева, проект линейного ускорителя разрабатывался под параметры японского клистрона, поэтому собственная их установка в максимально возможной степени соответствует «исходнику». Однако соответствие все же не стопроцентное, поэтому, вероятнее всего, три сибирских клистрона будут основными, а японскому останется роль резервного. Испытания линака со всеми тремя клистронами и на проектной энергии в 200 мегаэлектронвольт сейчас планируются на лето 2024 года, добавил Левичев. Раньше мы рассказывали, как японским ученым удалось увидеть с помощью синхротрона двухщелевую самоинтерференцию одиночных электронов во времени.