Астрономы провели анализ влияния запуска большого количества низкоорбитальных аппаратов на проведение астрономических наблюдений в видимом и инфракрасном диапазоне. Согласно выводам работы, пара десятков тысяч спутников испортят менее одного процента экспозиций на приборах с небольшими полями зрения, но крупные обзоры пострадают намного больше: у них до половины кадров получатся дефектными. Ситуация требует тесного сотрудничества ученых, компаний-операторов спутников и государственных космических агентств, пишут авторы в журнале Astronomy & Astrophysics.
До недавнего времени искусственные спутники Земли представляли существенную помеху для астрономов только в радиодиапазоне. Однако в последние годы сразу несколько компаний анонсировали планы по запуску тысяч новых низкоорбитальных аппаратов для обеспечения доступа в интернет на большей территории планеты, а некоторые из них уже начали воплощать задумку в реальность.
В связи с этим уже забеспокоились астрономы, занимающиеся наблюдениями и в других частях электромагнитного спектра. Ситуацию прокомментировал Международный астрономический союз (МАС) — главный руководящий орган профессионального сообщества астрономов призвал к разработке общих правил по ограничению яркости рукотворных объектов на орбите и тесной кооперации между всем заинтересованными сторонами.
Оливер Эно (Olivier Hainaut) и Эндрю Уильямс (Andrew Williams) из Европейской южной обсерватории по запросу МАС провели моделирование угрозы со стороны спутников для наблюдения в видимом и инфракрасном диапазоне. Они пришли к выводу, что запуск новых аппаратов в первую очередь будет мешать широкопольным обзорным телескопам, а сильнее всего проблема проявится в вечерние и предутренние часы для объектов низко над горизонтом.
Авторы отмечают, что их работа сделана с большим количеством упрощений, а финальная оценка консервативна, то есть в реальности ситуация может оказаться несколько лучше. Всего учитывалось 18 предложенных группировок с суммарным количеством в 26 тысяч спутников, которые в рамках модели находились группами в орбитальных плоскостях с наклоном от 42 до 80 градусов, равномерно распределенных относительно оси вращения планеты.
Яркость тел оценивалась исключительно на основе высоты орбиты и угловой высоты над горизонтом. Исследователи сами называют такую модель исключительно грубой, но отмечают, что она была прокалибрована по реальным наблюдениям спутников Starlink компании SpaceX. Количество вспышек, вызванных прямым отражением света Солнца, оценивалось на основе данных по спутникам «Иридиум» первого поколения.
Авторы выбрали вероятностный подход на основе геометрических соображений о видимых с поверхности положениях спутников. Влияние отдельно подсчитывалось для наблюдений с различными значениями времени экспозиции, величины поля зрения и спектральной области. Также оценивалась вероятность покрытия исследуемого объекта неподсвеченным спутником. В видимом диапазоне учитывалось только отражение света Солнца от спутников, а в инфракрасном они представлялись как нагретые до 300 кельвин сферы диаметром в один метр.
Астрономы приходят к выводу, что в среднем около 1600 спутников будет находиться над горизонтом обсерваторий в средних широтах, а примерно 250 из них будут выше 30 градусов, то есть в типичной области проведения наблюдений. В вечерние и предутренние часы 1100 аппаратов будут подсвечены, из которых 150 могут помешать астрономам.
Идущие друг за другом сразу после запуска спутники не представляют особой проблемы, так как вскоре они расходятся по разным орбитам и видны недолго. Прямые отражения, подобные вспышкам «Иридиумов», и покрытия исследуемых объектов также не повлияют существенно даже в пессимистическом сценарии.
Наблюдения с короткими экспозициями около секунды вне зависимости от используемой техники не пострадают. Средние экспозиции (около ста секунд) с обычными полями зрения пренебрежимо мало пострадают при проведении ночью, но до половины процента могут быть испорчены в вечерние и предутренние часы. Доля поврежденных наблюдения с длинными экспозициями (около тысячи секунд) составит менее процента ночью, но до трех процентов при близком к горизонту Солнце.
Наибольшую озабоченность вызывают широкопольные обзоры, такие как готовящийся в обсерватории имени Веры Рубин (ранее проект назывался LSST). В случае таких проектов до половины кадров будет испорчено и лишь наблюдения в середине зимы, когда Солнце находится очень низко под горизонтом, пройдут относительно без проблем.
Оценка влияния большого количества спутников будет продолжена. В частности, еще предстоит определить ущерб для наблюдения в миллиметровой области и радиодиапазоне.
В прошлом году были запущены первые спутники системы глобального интернета OneWeb и SpaceX, а последний вспыхивающий спутник «Иридиум» начал сходить с орбиты.
Тимур Кешелава
Она вспыхнула в 1987 году
Инфракрасный космический телескоп «Джеймс Уэбб» получил изображение остатка сверхновой 1987A в Большом Магеллановом Облаке. На снимке заметны ранее не наблюдавшиеся серповидные структуры из газа, выброшенного при взрыве звезды, сообщается на сайте телескопа. Сверхновая 1987A вспыхнула 23 февраля 1987 года в галактике-спутнике Млечного Пути Большое Магелланово Облако из-за коллапса ядра голубого сверхгиганта в туманности Тарантул, являющейся огромной областью звездообразования. Она стала самым близким подобным катаклизмом из всех наблюдавшихся с момента изобретения телескопа, кроме того, от вспышки были впервые зарегистрированы нейтрино. Разлетающиеся фрагменты звезды наблюдаются уже более 40 лет при помощи различных наземных и космических телескопов. Новое изображение остатка сверхновой было получено при помощи камеры ближнего инфракрасного диапазона NIRCam и набора узкополосных фильтров. Центральная часть туманности заполнена плотными комками газа и пыли, считается, что в ней находится плерион и связанная с ним нейтронная звезда. Затем идет яркое кольцо, возникшее из вещества звезды, выброшенного перед взрывом. Оно содержит горячие точки, образованные взаимодействием околозвездного вещества с ударной волной. Еще дальше видны не наблюдавшиеся ранее небольшие серповидные структуры, содержащие выброшенный при взрыве газ, а в самых внешних частях остатка заметны два тусклых кольца — световое эхо от вспышки, возникшее на газопылевых облаках в окрестностях остатка. В дальнейшем «Джеймс Уэбб» продолжит исследование остатка 1987A при помощи инструментом NIRSpec и MIRI, чтобы узнать больше о строении туманности и подтвердить наличие в ней нейтронной звезды. Ранее мы рассказывали о том, как астрономы рассмотрели остаток сверхновой 1987A в FM-диапазоне.