Функционирует при финансовой поддержке Федерального агентства по печати и массовым коммуникациям (Роспечать)

«Магический» двухслойный графен оказался странным металлом

Wikimedia Commons

В двухслойном графене с поворотом на «магический» угол обнаружили редкую линейную зависимость электрического сопротивления от температуры вблизи абсолютного нуля. Эта особенность роднит двухслойный графен с необычным классом веществ под названием странные металлы. К нему, например, относятся купраты, в числе которых рекордсмены по температуре сверхпроводимости при нормальном давлении, а также рутенаты, пниктиды и некоторые другие материалы. Открытие подтверждает наличие нового фундаментального механизма переноса заряда и тепла в таких соединениях, пишут авторы в журнале Physical Review Letters.

Графен — это двумерная аллотропная модификация углерода, представляющая собой расположенные в виде шестиугольников атомы, объединенные в листы атомарной толщины. Графен обладает множеством необычных свойств, которые потенциально применимы в науке и технологиях. Однако ученые продолжают открывать новые необычные характеристики этого материала.

Одним из важных открытий последних двух лет стало обнаружение сверхпроводимости в двухслойном графене. Поворот листов на небольшой угол создает периодическую муаровую шестиугольную сверхрешетку с намного большим периодом, чем у самого графена. Если угол принимает одно из «магических» значений, наименьшее из которых близко к 1,1 градусу, то при низких температурах вещество переходит в сверхпроводящее состояние. Детальные исследования показали, что такой графен по некоторым свойствам, в частности, фазовой диаграммой, похож на купраты — соединения, с открытием которых появился термин высокотемпературная сверхпроводимость.

Пабло Харильо-Эрреро (Pablo Jarillo-Herrero) из Массачусетского технологического института и его коллеги из США и Японии обнаружили еще один признак, который роднит повернутый на «магический» угол двухслойных графен с купратами: наличие фазы странного металла с линейной зависимостью сопротивления от температуры вблизи абсолютного нуля. Такая закономерность не наблюдается у обычных металлов, у которых, как правило, после сверхпроводящей фазы происходит резкий рост сопротивления. Более того, на данный момент нет полноценного теоретического объяснения этому феномену.

Долгое время электронный транспорт в металлах успешно описывался сформулированной в 1900 году теорией Друде, которая связывает проводимость с плотностью рассматриваемых как газ электронов, их массой и средним временем между рассеяниями на ионах τ. С квантовыми поправками, заменившими массу реальных частиц на эффективную массу носителей заряда и связавшими время между рассеяниями при низких температурах пропорциональностью τ ∼ T-2, данная модель успешно описывала большинство экспериментальных данных вплоть до 1980-х годов.

Открытие купратов в 1986 году продемонстрировало ограниченность теории, которая не смогла объяснить наблюдавшуюся в них фазу странного металла с линейной зависимостью сопротивления от температуры. Такое поведение предполагает, что время между рассеяниями обратно пропорционально первой степени температуры, а не квадрату, как в модели Друде. Открытие фазы странного металла у двухслойного графена дополнительно свидетельствует о необходимости разработки нового теоретического подхода к явлениям переноса и говорит о возможности существования такой фазы во множестве различных систем.

Если вычислить по формуле Друде время между рассеяниями в странных металлах (что с теоретической точки зрения плохо обосновано), то получается выражение τ = Cℏ∕kT, где ℏ — постоянная Планка, T — температура, k — постоянная Больцмана, а C — числовой коэффициент пропорциональности. Считается, что темп рассеяний должен быть связан с силой межэлектронных взаимодействий (которые полностью игнорируются в оригинальной модели Друде), а они сильно отличаются в различных странных металлах.

Однако наблюдения демонстрируют, что коэффициент C близок к единице у самых разнообразных странных металлов и, как оказывается, у двухслойного графена также: в новой работе измеренные значения C попали в диапазон от 1,1 до 1,6. Эта универсальность наводит теоретиков на мысль о наличии нового фундаментального механизма явлений переноса в странных металлах. Эту ситуацию ученые связывают с планковской диссипацией (Planckian dissipation), то есть состоянием квантовой запутанности многих электронов, в котором достигается максимальная разрешенная законами физики скорость рассеяния энергии.

Двухслойный графен может оказаться удобной системой для продолжения экспериментов в данной области. Его основное преимущество заключается в возможности управления фактором заполнения сверхрешетки, то есть, фактически, плотностью носителей заряда, посредством приложения электрического напряжения, в то время как другие странные металлы необходимо изготавливать заново с другими примесями.

Ранее физики объяснили «магическую» сверхпроводимость двухслойного графена фононами, увидели в нем экситоны и превратили в аномальный магнит. 

Тимур Кешелава

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.