Группа ученых из Японии, Китая и Финляндии впервые синтезировала одномерные гетероструктуры, в которых различные атомные слои расположены соосно. Этот эксперимент показывает, что все известные двумерные материалы могут быть свернуты в их одномерные аналоги, что позволяет использовать полезные свойства, присущие только одномерным структурам. Работа опубликована в журнале Science.
Низкоразмерные материалы, состоящие из единичных атомов, сначала изготавливались из углерода (фуллерены, нанотрубки, графен), но сегодня ученым доступен целый спектр двумерных материалов, которые можно объединить в гетероструктуры, например путем механического переноса или самосборки в растворе. Комбинации двумерных кристаллов с различными свойствами приводят к образованию ван–дер-ваальсовых гетероструктур с новыми функциональными возможностями. При правильной комбинации можно получить одномерные структуры, которые имеют ряд полезных свойств, такие как дополнительная топологическая защищенность.
Ученые создали одномерную гетероструктуру путем нанесения нитрида бора (BN) или дисульфида молибдена (MoS2) на одностенные углеродные нанотрубки (SWCNT). В отличие от результатов ранних попыток получения одномерных гетероструктур, внешние оболочки BN и MoS2 представляют собой монокристаллические бесшовные идеальные цилиндры. Кроме того, авторы показали, что на углеродной трубке можно вырастить несколько слоев BN, а затем слой MoS2, что позволяет создать многослойные трубчатые структуры.
Ученые показали хорошо контролируемое изготовление коаксиальных трубок SWCNT-BNNT и SWCNT-BNNT-MoS2 с диаметром меньше пяти нанометров и разработали общий рецепт изготовления такого рода одномерных гетероструктур.
Материалы, изученные физиками, графитовый углерод, MoS2 и BN, используют в качестве твердых смазочных материалов в их плоском двумерном состоянии, таким образом, одномерные гетероструктуры, разработанные учеными, можно использовать в качестве наноразмерных подшипников, что приближает ученых к созданию наномеханизмов.
Ранее мы писали как другая японская группа разработала аппарат, который собирает одноатомные пленки в гетероструктуры, а в 2018 году ученые использовали похожую гетероструктуру для изменения свойств графена.
Михаил Перельштейн
Это первый легкий металл, в котором его удалось обнаружить
Физики впервые зафиксировали орбитальный эффект Холла в легком металле. Для этого они измерили угол изменения направления света при прохождении через титан, который использовали в качестве образца из-за высокой проводимости. Открытие поможет уточнить механизм поведения металлов в магнитном поле, сообщают ученые в Nature. Если проводник с током находится во внешнем магнитном поле, то кроме классического эффекта Холла (возникновение разности потенциалов при протекании тока, перпендикулярного полю) в нем можно увидеть еще две разновидности этого явления: спиновый и орбитальный эффекты Холла. В первом случае из-за разницы в электронной проводимости электронов образуется поток спина: электроны с антипараллельными спинами отклоняются к противоположным сторонам проводника. А во втором — поток орбитального момента: он возникает благодаря действию на электроны силы Лоренца и направлен перпендикулярно току. Ранее считалось, что именно спиновый эффект преобладает в твердых телах с ненулевым значением спин-орбитального взаимодействия. При этом орбитальный эффект не требует спин-орбитального взаимодействия и потому более распространен: для легких металлов (металлы с небольшой плотностью, например алюминий, олово, титан и другие) орбитальная холловская даже превышает спиновую. Однако орбитальный эффект влияет на магнитные свойства металла только косвенно, причем изменения эти настолько малы, что зафиксировать их не удается. Чтобы преодолеть эти ограничения и разглядеть орбитальный эффект Холла в легком металле, физики из Южной Кореи под руководством Хён У Ли (Hyun-Woo Lee) предложили измерять его косвенно — по углу керровского поворота, который характеризует угол наклона плоскости поляризации света при прохождении через материал. Орбитальные токи Холла меняют показатель преломления материала, и, следовательно, угол керровского поворота. В качестве объекта исследования был выбран легкий металл титан — благодаря большой орбитальной кривизне Берри у него текстурированная структура поверхностей Ферми, что, согласно расчетам, должно приводить к очень высокой орбитальной холловской проводимости. С помощью оптической спектроскопии ученым удалось уловить эти изменения — на основании данных спектроскопии они построили график зависимости угла керровского поворота от плотности тока в титане. Зависимость оказалось линейной: чем больше модуль плотности тока, тем больше изменение угла, что подтвердило наличие орбитального эффекта Холла. Его величину ученые определяли по значению эффективной орбитальной холловской проводимости. Оно составило 130h/e обратных ом, это почти в 30 раз меньше расчетной. Причины несоответствия установить не удалось, но ученые собираются провести дополнительные исследования. Несмотря на расхождение с теорией, полученные результаты не только подтвердили наличие орбитального эффекта, но и показали, что именно из-за него в легких металлах возникает и спиновый эффект Холла. То есть чтобы предсказать поведение металлов в магнитном поле, учитывать этот эффект обязательно. У эффекта Холла существует несколько различных механизмов, и каждый из них тщательно исследуется учеными. Например, физики уже изучили, как вакуумные флуктуации нарушили механизм квантового эффекта Холла и придали ультрахолодным атомам дробное квантовое состояние Холла.