Химики создали материал с рекордной анизотропией теплопроводности

Ученые синтезировали нанокомпозитное вещество, которое хорошо проводит тепло вдоль внутренних слоев, но близко по свойствам к теплоизолятору в перпендикулярном направлении. Отношение теплопроводностей в разных направлениях для данной структуры оказалось рекордным и достигает значения в 38, пишут авторы в журнале Angewandte Chemie.

Управление потоками тепла исключительно важно в самых разнообразных ситуациях, начиная от работы микроэлектроники, до поддержания комфортной температуры внутри дома. Чтобы отвести тепло используются вещества с высокой теплопроводностью, например, металлы. Для предотвращения нежелательного изменения температуры применяются теплоизоляторы — как правило, многофазные материалы, такие как пенопласт или поролон, представляющие собой заполненную воздухом мелкую пену.

Несмотря на то, что теплопроводящие свойства материалов обычно важны на сравнительно больших расстояниях, они определяются структурой веществ и их химией на микроуровне. Ученые уже обнаружили ряд экстремальных проявлений этой зависимости. В частности, одномерные полимерные нити демонстрируют удивительно высокую теплопроводность, в то время как неупорядоченные слоистые материалы, наоборот, проводят тепло очень плохо.

Химики из Германии и Греции синтезировали новое вещество, которое представляет собой одномерные полимерные цепи поливинилпирролидона, зажатые между слоями синтетического флюорогекторита (Hec) — глинистого неорганического минерала. Получившаяся структура похожа по строению на природный органико-неорганический композит — перламутр. При этом вещество прозрачно, а также оказалось электрическим изолятором.

Ключевой особенностью материала является его упорядоченность, которая позволяет создавать однородные пластины, между которыми находятся не переплетающиеся полимерные нити. Такая система подходит для детального исследования не только необычной теплопроводности, но и ее связи с механическими свойствами вещества на микроскопическом масштабе, которые измерять сложнее.

Получить столь однородный материал позволило редкое свойство Hec под названием осмотическое набухание, то есть отщепление слоев при определенных химических воздействиях. В случае Hec простое погружение вещества в деионизованную воду приводило к разделению на отдельные чешуйки минимально возможной толщины 10 ангстрем и средним диаметром в 20 микрон. Полученную взвесь смешивали с раствором полимера и высушивали, получая в результате материал из сотен сложенных в стопку слоев.

Измерения свойств вещества показало рекордное значение анизотропии теплопроводности: вдоль слоев тепло распространялось до 38 раз лучше, чем поперек них. При этом большее значение (5,7 ватт на метр на кельвин) примерно соответствует показателям термопаст, которые используют для отвода тепловой энергии от различных микроэлектронных устройств, в том числе компьютерных процессоров. Для электрических изоляторов схожего строения это также оказалось рекордом.

Ученые использовали ряд методов, таких как бриллюэновская спектроскопия, для определения механических свойств вещества и их зависимости от направления. Оказалось, что такие механические характеристики, как модули сдвига и Юнга, коррелируют с теплопроводностью на микроуровне — они оказались значительно анизотропными. Подобное также устанавливается впервые, по словам авторов работы.

Ранее ученые вывели единую теорию для описания теплопроводности кристаллов и стекол, увидели в эксперименте квантование теплопроводности в топологических материалах, а также создали изотропный теплопроводящий пластик.

Тимур Кешелава

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Физики нашли в замещенном апатите свинца комнатную сверхпроводимость при атмосферном давлении

Пока эти результаты вызывают сомнения