Американские инженеры создали беспилотник самолетного типа с крыльями, состоящими из настоящих голубиных перьев. Он позволяет исследовать особенности полета голубей и влияние на него перьев. Инженеры опубликовали две статьи с такими исследованиями: в одной из них, опубликованной в Science Robotics они показали, что голуби могут использовать запястья и пальцы крыльев для быстрых и точных поворотов во время полета, а в другой, которая была опубликована в Science, они выяснили, что крылья образуют единую поверхность без разрывов, благодаря наличию на перьях микроструктур, действующих подобно застежке.
В современной авиации для маневрирования в полете используются закрылки, предкрылки и другие отклоняемые поверхности. Например, отклоняя закрылки в разных направлениях, самолет может крениться в нужную сторону. Птицы же во время полета маневрируют более сложным образом, меняя саму форму крыльев. В авиации эта концепция частично применяется на самолетах с изменяемой стреловидностью, однако на них консоли крыла отклоняются синхронно — зачастую переменное отклонение механически невозможно из-за особенностей конструкции. Кроме того, существенное влияние на полет птиц оказывает форма и поверхность их перьев.
Некоторые авиаконструкторы предлагают применять элементы, аналогичные частям птичьих крыльев, в самолетостроении, однако подробное изучение механизмов управления полетом у птиц затруднено и часто сводится к моделированию или пассивному наблюдению за птицами. Инженеры из Стэнфордского университета под руководством Дэвида Лентинка (David Lentink) создали из настоящих голубиных перьев беспилотник самолетного типа с механизированным крылом изменяемой формы, позволяющий проводить активные исследования с крыльями птиц.
Корпус аппарата имеет классическую форму, а хвостовое оперение отчасти напоминает хвост птиц, а также оснащено двумя отклоняемыми поверхностями. Беспилотник оснащен крылом, которое конструктивно напоминают настоящие крылья птиц, однако он не может совершать маховые движения, а лишь способен складывать их в горизонтальной плоскости. За движение вперед отвечает винт в передней части, соединенный с электромотором. Каждая консоль крыла состоит из трех сегментов, один из которых статичен, а два другие могут двигаться и тем самым менять форму крыла. На каждой консоли закреплено по 20 перьев голубя, по 10 из которых располагаются на подвижных сегментах.
Инженеры провели несколько первичных экспериментов. Например, они показали, что, складывая одну из консолей крыла, беспилотник может крениться в нужную сторону. Отклонение запястья крыла позволяет оказывать большое влияние на полет, а отклонение пальца скорее годится для небольшого и точного маневрирования.
При этом у такого крена есть отличия о того, как кренятся самолеты. Дело в том, что при отклонении элеронов в разные стороны самолет начинает вращаться вокруг продольной оси с постоянной скоростью, и пилоту необходимо гасить это вращение обратным отклонением. Эксперименты с построенным летательным аппаратом показали, что после складывания одной из консолей крыла скорость вращения вокруг продольной оси сначала возрастает, а затем самопроизвольно падает почти до нуля.
Еще одно исследование инженеров касается того, как крыло сохраняет свою целостность, хотя и состоит из отдельных перьев, которые меняют свое положение относительно друг друга. Исследователи выяснили, что перья могут скользить друг относительно друга до определенного уровня, однако между ними не образуется промежутков, потому что соседние перья сцепляются друг с другом благодаря микроструктуре, состоящей из крючкообразных элементов и выступов.
Даже крупные авиастроительные концерны предлагают применять в самолетах перьеобразные элементы. Например, в прошлом году Airbus показал концепт пассажирского самолета с законцовками крыла и хвостовым оперением, по форме напоминающем перья птиц.
Григорий Копиев
Гексакоптер оснащен двумя взлетно-посадочными платформами для квадрокоптеров
Инженеры из Сколтеха разработали гибридный гексакоптер MorphoLander, который выступает в роли передвижного аэродрома для дронов меньшего размера. MorphoLander не только летает, но и может ходить по неровной поверхности при помощи четырех ног. В верхней части корпуса расположены две взлетно-посадочные платформы для микродонов. Дрон может пригодиться для инспекции объектов и поиска пострадавших во время стихийных бедствий, говорится в препринте на arXiv.org. При поддержке Angie — первого российского веб-сервера Дроны отлично подходят для выполнения задач поиска, инспекции и мониторинга, но потребляют много энергии и не могут долго находиться в полете. Одним из способов преодолеть это ограничение стала разработка дронов гибридной конструкции, которые могут не только летать, но и передвигаться по земле, например, с помощью колес или ног. Несмотря на то, что такой подход позволяет продлить время работы за счет менее энергозатратного способа передвижения по поверхности, продолжительность полета гибрида и его эффективность часто снижается из-за дополнительного веса. Инженеры под руководством Дмитрия Тетерюкова (Dzmitry Tsetserukou) из Сколтеха предложили использовать громоздкий дрон в качестве носителя для дронов поменьше. Тогда большой дрон выступает в роли передвижного «улья», который в нужный момент выпускает рой маленьких дронов, способных более эффективно выполнить задачу на большой территории за счет совместной работы. Разработанный прототип под названием MorphoLander представляет собой гексакоптер с четырьмя ногами, каждая из которых имеет три степени свободы. С их помощью дрон может передвигаться по неровной поверхности. Масса гибрида немного больше 10 килограмм. Встроенного аккумулятора хватает на 12 минут полета. Сверху на корпусе закреплены две посадочные платформы диаметром 20 сантиметров, на которые могут садиться микродроны. Чтобы микродронам (инженеры использовали Crazyflie 2.1 массой 27 грамм) было проще садиться на MorphoLander, материнский дрон с помощью алгоритма стабилизации старается удерживать горизонтальное положение платформ, подстраивая высоту ног под неровности поверхности. Посадка микродронов происходит под управлением алгоритма машинного обучения, его обучение с подкреплением проходило в симуляторе на платформе игрового движка Unity, который позволяет имитировать физику, с использованием пакета машинного обучения Unity ML Agents. Обученный алгоритм посадки затем испытали в трех сценариях с участием реальных дронов. В первом два микродрона должны были взлетать с расстояния полутора метров от MorphoLander и затем садиться на его платформы. Среднее значение отклонения от центра платформы в этом сценарии составило всего около 5,5 миллиметра. Во втором сценарии микродроны должны были садиться на материнский дрон, стоящий на неровной поверхности. В этом случае ошибка возросла и составила 25 миллиметров. Третий сценарий имитировал реальное применение: микродроны взлетали с платформ, в то время как MorphoLander отходил от места взлета на некоторое расстояние, после чего микродроны должны были сесть обратно. Среднее значение отклонения от центра 20-сантиметровой платформы составило 35 миллиметров. В будущем инженеры планируют увеличить точность и устойчивость алгоритма управления микродронами за счет контроля тяги отдельных винтов. https://www.youtube.com/watch?v=fV8_Ejy81s8&t=1s Совместная работа помогает роботам справляться с более трудными задачами. К примеру японские инженеры разработали систему из работающих в паре дрона и наземного робота. Они соединены друг с другом тросом, что позволяет наземного дрону взбираться на более крутые подъемы. Для этого дрон закрепляет трос на вершине, после чего наземный робот натягивает его с помощью лебедки и поднимается наверх.