Американские ученые представили метод для создания небольших биороботов из живых клеток. Существа создаются в два шага: сперва программируется модель со всеми свойствами, после чего ее воссоздают из клеток лягушачьего эмбриона в чашке Петри. Для создания биороботов размером в один миллиметр использовались клетки гладкой шпорцевой лягушки (Xenopus laevis): самих существ, поэтому, назвали ксеноботами. Ксеноботы двигаются в определенном направлении, а в будущем смогут, например, заменить миниатюрных роботов для доставки лекарств в организм человека или помогут собирать мусор в океане, пишут ученые в Proceedings of the National Academy of Sciences.
Сейчас роботов создают из самых разных материалов в зависимости от той задачи, которую им нужно выполнить. Нередко, например, от робота требуется определенная гибкость, для чего используются мягкие актуаторы и само тело робота. При этом части роботов также можно создавать и из биоматериалов: например, мышечных клеток или нейронов.
Однако создание биороботов имеет ряд ограничений. Например, они редко обходятся без синтетических частей (например, «тело» робота из мышц и нейронов — полимерная подложка), а также их не так просто программировать и затем воссоздавать.
Сэм Кригман (Sam Kriegman) из Вермонтского университета и его коллеги решили автоматизировать процесс создания живых биороботов с помощью эволюционного алгоритма. Их алгоритм создает существ из двух типов клеток, взятых из бластулы гладкой шпорцевой лягушки. Первый тип клеток — статичный, вторые клетки могут сокращаться, а в самом алгоритме они представлены в виде вокселей.
Цель эволюционного алгоритма — определить такую конфигурацию существа, при которой оно сможет эффективнее всего двигаться вперед. Для этого он создает популяцию случайных существ, а затем отбрасывает тех, кому не хватило сокращающихся кубиков для того, чтобы преодолеть максимальное расстояние за 10 секунд при сокращении в 2 герца. Например, очевидно, что существо в виде кубика, в котором только один из вокселей оставлен под сокращающуюся клетку, отбор эволюционного организма не пройдет.
После этого на основании модели создается само существо. Из эмбрионов лягушки выделяются индуцированные стволовые клетки, которые в самом организме используются как статичные. Само существо (размером примерно в миллиметр) создается вручную (ученые утверждают, что им удалось добиться «биологически приближенной» формы по сравнению с созданной алгоритмом), после чего к телу добавляются сердечные прогениторные клетки, из которых затем формируются сокращающиеся кардиомиоциты.
Пока что организмы достаточно просты, а также не автоматизирован сам процесс их создания, так как делать их приходится вручную. Авторы, однако, отмечают, что способность к движению ксеноботов позволит им переносить и другие объекты: их, например, можно будет применять для доставки лекарств, избавления сосудов от тромбов и переноса мусора в океане. Кроме того, они отметили, что несколько таких организмов смогут действовать сообща и перемещаться в группах.
Для создания биороботов иногда используют изначально автономные живые организмы — например, животных. Так, в 2017 году ученые прикрепили к черепахе управляемый ее движениями механизм и отправили в плавание.
Елизавета Ивтушок
С помощью модуляции дофаминовой сигнализации
Американские ученые разработали аденоассоциированный вирусный вектор, который несет ген, кодирующий человеческий глиальный нейротрофический фактор (GDNF). Введение этого вектора макакам-резусам с симптомами алкоголизма снижало вероятность злоупотребления алкоголя в течение года. Как сообщается в журнале Nature Medicine, такое изменение в поведении сопровождалось нейрофизиологическими модуляциями дофаминовой сигнализации в прилежащем ядре, которая обычно страдает при хроническом употреблении алкоголя. Несмотря на то, что расстройства, связанные с употреблением алкоголя, наносят огромный экономический и социальный ущерб, существует лишь несколько эффективных фармакотерапевтических средств. При этом не существует подходов, которые бы непосредственно воздействовали на лежащие в основе адаптации нейронные контуры, которые формируются при длительном употреблением алкоголя и лежат в основе алкогольной зависимости. Команда ученых под руководством Кристофа Банкевича (Krystof Bankiewicz) из Университета штата Огайо исследовала, как на эти схемы мог бы повлиять глиальный нейротрофический фактор (GDNF), поскольку известно, что он принимает непосредственное участие в регуляции дофаминергических нейронов (они непосредственно связаны с развитием алкоголизма). Для этого авторы разработали аденоассоциированный вирусный вектор, который несет ген, кодирующий человеческий GDNF. Поскольку неспособность длительно отказываться от алкоголя и неспособность сократить количество потребляемого алкоголя выступают двумя основными проблемами у людей с алкогольной зависимостью, ученые смоделировали такое поведение у макак. Они многократно повторяли циклы ежедневного опьянения с последующим воздержанием от алкоголя. Когда необходимые паттерны поведения были достигнуты, макаки-резусы четыре недели пили воду вместо этанола. Затем каждой обезьяне в мозг вводили либо экспериментальный, либо контрольный вектор. Через два месяца макакам возобновили доступ к алкоголю на четыре недели. В общей сложности ученые шесть раз повторили циклы принудительного воздержания и повторного введения алкоголя, чтобы смоделировать подобные циклы. Экспериментальный вектор значительно снижал потребление алкоголя в периоды повторного введения алкоголя в течение года (р ≤ 0,001). Причем у макак из экспериментальной группы наблюдалось снижение максимальной дозы потребляемого алкоголя уже в первый день после абстиненции (р ≤ 0,0001). Магнитно-резонансная томография и гистологические исследования тканей мозга показали, что лечение вектором с GDNF восстанавливало дофаминергическую функцию в прилежащем ядре, которая обычно снижена в мезолимбической системе после хронического употребления алкоголя. Повышенная экспрессия GDNF увеличивала доступность и использование дофамина в пути вознаграждения макак до значений, сравнимых со здоровыми макаками. Это доклиническое исследование показывает возможность нового подхода к лечению алкоголизма — с помощью генной терапии. Дальнейшие исследования будут направлены на изучение подробного профиля безопасности препарата у животных. Недавно мы рассказывали, что тягу к алкоголю (и другим веществам) можно зафиксировать с помощью функциональной магнитно-резонансной томографии.