Физик опубликовал теоретические выкладки, согласно которым с использованием существующих технологий возможно создание высоких концентраций позитрониев внутри пузырей в жидком гелии. Получение такого вещества позволит начать эксперименты по вынужденной аннигиляции, которая приведет к генерации когерентного гамма-излучения, то есть будет представлять гамма-лазер, пишет автор в журнале Physical Review A.
Лазер — это устройство, которое генерирует когерентные электромагнитные волны. Такие колебания отличаются согласованностью амплитуды и фазы, что позволяет фокусировать их в небольшие области, при этом они способны распространяться на большие расстояния без значительного уширения пучка, а также обладать исключительно узкой полосой частот.
Условия для генерации когерентного излучения существенно отличаются для различных частотных диапазонов, из-за чего в узком смысле лазерами называют источники лишь видимого света или близких длин волн. В случае микроволновой области говорят о мазерах, а высокоэнергетическое излучение создают рентгеновские лазеры.
Нереализованной идеей пока что остается гамма-лазер, то есть излучение когерентных фотонов наиболее высоких энергий. Существует ряд теоретических концепций, которые в основном опираются на ядерный взрыв или работающий в импульсном режиме ядерный реактор в качестве источника энергии (накачки). Как правило, большинство таких вариантов в реальности будут одноразовыми, так как выделяющаяся энергия уничтожает всю установку.
Также предложена идея о накачке в виде аннигиляции электрон-позитронных пар. Для реализации этой задумки необходимо получать высокую частоту и плотную локализацию взаимодействий. Один из вариантов предполагает создание в пузырях из гелия-4 большой концентрации позитрониев, то есть связанных состояний из электрона и позитрона. Однако на практике этого продемонстрировано не было.
Одна из основных трудностей заключается в необходимости получения позитрониев с одинаковыми параметрами, чтобы можно было запустить контролируемую аннигиляцию. В идеале надо получить конденсат Бозе — Эйнштейна из этих частиц, который можно согласованно «схлопнуть» внешним воздействием. На данный момент в экспериментах было продемонстрировано существование отдельных позитрониев в пузырях жидкого гелия, а также одиночных электронов, их групп и атомов водорода.
Сотрудник Калифорнийского университета в Риверсайде Аллен Миллс (Allen Mills) привел новые расчеты, согласно которым первые эксперименты можно начать уже в ближайшее время. Из его вычислений следует, что существующие технологии позволяют получать пузыри с примерно 100 тысячами позитрониев в каждом, а экспериментальные методы смогут измерить их распределение импульсов, которое позволит убедиться в формировании квантового конденсата.
Создавать пузыри автор предлагает при помощи облучения алмазной пластины импульсами позитронов. Большинство частиц будет поглощено веществом, но около 20 процентов образует позитронии и попадет в жидкий гелий. При этом энергия получающихся частиц будет находиться в подходящем интервале от нуля до трех электронвольт. Из-за отрицательного сродства между гелием и позитронием последние сразу образуют маленькие пузыри, которые начнут сливаться, так как энергия больших меньше, чем у совокупности малых. Вычисления показывают, что времени порядка ста наносекунд должно хватить на образование пузырей, а теплопроводности жидкого гелия — для отвода излишков тепла.
Физик получил выражение для радиуса пузыря в зависимости от содержащегося в нем количества позитрониев и внешнего давления. При давлении в одну атмосферу и при количестве свыше 100 тысяч частиц должны получатся пузыри с почти постоянной концентрацией на уровне 1,3×1020 позитрониев в кубическом сантиметре, причем критическая температура для этого вещества составит около 370 кельвин, что обеспечит высокую долю частиц в состоянии конденсата при низких температурах.
Отличить в опыте ситуацию с относительно малым количество пузырей с большим количеством частиц от большого количества маленьких пузырей можно будет по времени жизни. В первом случае оно должно быть близко к значению для вакуума (142 наносекунды), а во втором определяться взаимодействием с атомами гелия в стенке пузыря (91 наносекунда).
Доказать наличие конденсата можно будет при помощи магнитного поля: если включение внешнего поля на короткий промежуток времени (примерно 10 наносекунд) приведет к излучению фотонов от аннигиляции строго в противоположные стороны, то был получен конденсат. В то же время для распределения по импульсам для обычного состояния при температуре в 2 кельвина ожидается разброс углов с характерной величиной в 60 микрорадиан.
Ранее ученые теоретически обосновали получение гамма-лучей при помощи пластиковой мишени, предложили использовать лазер для общения с инопланетянами и убедились в высоком качестве кристаллических лазерных сред «из пробирки».
Тимур Кешелава
А также измерит расстояние до них
Американские ученые разработали технологию пассивного теплового зрения HADAR, которая по инфракрасному изображению получает информацию о температуре, материалах и текстуре поверхности объектов, их излучательной способности, а также умеет измерять расстояние. Технология позволяет в ночных условиях получать изображение, сопоставимое по качеству со стереоскопическими изображениями, получаемыми обычными RGB камерами при дневном освещении. Статья опубликована в журнале Nature. Для автономной навигации и взаимодействия с людьми роботам и беспилотникам нужна информация об окружении, которую они получают с помощью камер, лидаров, сонаров или радаров. Однако обычные камеры зависят от условий освещенности и плохо работают в ночное время и при плохой погоде. Кроме этого информация, получаемая с камер не содержит физического контекста, что может приводить к некорректной работе нейросетевых алгоритмов автопилота, который, к примеру, не может отличить настоящего человека от манекена. Активные сенсоры, такие как лидары и радары, при резком росте их числа начинают взаимно влиять друг на друга. Выходом могло бы стать использование в условиях недостаточной видимости камер, работающих в инфракрасном диапазоне. Однако из-за так называемого «эффекта призрачности» получаемые тепловизором изображения обычно выглядят как пятна без четкой текстуры. Это связано с тем, что поверх отражающихся от объекта инфракрасных лучей, которые несут информацию об особенностях его рельефа, накладывается его собственное тепловое излучение, которое засвечивает эту полезную информацию. Группа ученых под руководством Зубин Джакоб (Zubin Jacob) из Университета Пердью смогла справиться с этой проблемой. Они разработали технологию под названием HADAR (акроним от слов heat-assisted detection and ranging), которая с помощью машинного обучения извлекает из изображений, полученных в инфракрасном диапазоне, информацию о температуре объектов, излучательной способности материалов, из которых они состоят, а также их физической текстуре. Кроме того, технология позволяет определять расстояние до объектов на изображении. Выделение информации о собственном излучении объектов позволяет избавиться от «эффекта призрачности» и получить информацию о текстуре. Для этого авторы используют данные из библиотеки материалов, которая содержит информацию об их излучательной способности. Инфракрасное изображение фиксируется с помощью гиперспектральной камеры, после чего данные поступают на вход нейросетевой модели, которая производит декомпозицию исходных данных, выделяя из них информацию о температуре, собственном излучении и текстуре. Для обучения алгоритма исследователи использовали как настоящие изображения, полученные с помощью камеры, так и множество сгенерированных трехмерных сцен. Возможности технологии демонстрирует одна из сцен, на которой при слабом освещении запечатлен автомобиль черного цвета и человек, рядом с которым установлен вырезанный из картона портрет Альберта Эйнштейна в натуральную величину. Изображения, полученные с помощью обычной камеры, лидара и HADAR затем использовали для определения объектов с помощью алгоритма распознавания изображений. На изображении, полученном с помощью обычной камеры, алгоритм ошибочно распознал двух людей, приняв картонную фигуру за человека. На данных, полученных лидаром, оказалось невозможно определить автомобиль. При этом HADAR смог выделить все составляющие сцены, а также определить, что одна из человеческих фигур имеет сигнатуру краски на поверхности, а вторая покрыта тканью. Созданная технология может значительно улучшить системы автономной навигации беспилотных транспортных средств и роботов, дополнив уже существующие системы или даже заменив их. HADAR позволяет определять объекты и измерять расстояние по данным, полученным в ночное время, так же хорошо, как это делают традиционные системы компьютерного зрения, которые используют данные с камер в условиях дневного освещения. По словам авторов работы, в дальнейшем им предстоит решить проблему высокой стоимости оборудования для гиперспектральной съемки и невысокой производительности алгоритма. Сейчас процесс получения изображений и их обработки занимает минуты, но для работы в режиме реального времени это время необходимо сократить. Ранее мы рассказывали, как физики создали лидар, способный распознать метровые детали с рекордного расстояния в 45 километров в условиях высокого шума и слабого сигнала.