Белый шум на фоне звуков помогает эффективнее отличать их друг от друга за счет ограничения активности нейронов слуховой коры. Это выяснили швейцарские ученые, которые изучили активность мозга мышей при прослушивании звуков. Эффект был значимым для звуков со спектрально близкими частотами (то есть практически не отличающимися друг от друга), а также проявлялся поведенчески. Кроме того, похожие изменения наблюдались и при оптогенетической активации нейронов, участвующих в регуляции слухового восприятия. Это указывает на адаптивность слуховой системы головного мозга в условиях шумового загрязнения, воздействующего на стимуляцию, пишут ученые в журнале Cell Reports.
Активность разных частей сенсорной коры головного мозга достаточно специфична: области, которые вовлечены в обработку информации, полученной через разные модальности, активируются только под воздействием определенной стимуляции на принимающие каналы (например, свет, получаемый через сетчатку глаза, или звук, который воспринимают волосковые клетки уха). Интересно, что подобная специфичность проявляется и внутри восприятия определенной модальности: другими словами, для определенных отделов сенсорной системы очень важны параметры поступающего сигнала.
Например, нейроны слуховой коры селективно обрабатывают звуки в зависимости от их частоты. При этом они достаточно адаптивны и поддаются, к примеру, фоновому шуму или внезапным изменениям звука, привлекающим внимание слушающего. О том, как подобная адаптивность влияет на слуховое восприятие и последующую регуляцию поведение, однако, известно достаточно мало.
Чтобы изучить этот вопрос подробнее, Расмус Кристенсен (Rasmus Christensen) из Университета Базеля и его коллеги решили провести эксперимент на мышах. Для этого они включали своим подопытным 37 звуков разных частот (от 4 Герц от 48,7 Килогерца) длительностью по 50 миллисекунд каждая при уровне громкости в 60 децибелов. Звуки включали либо чистыми, либо на фоновом, «белом» шуме с уровнем звукового давления чуть ниже стимула (50 децибелов). Активность мозга при восприятии звуков измеряли с помощью вживленных в мозг мышей электродов, получая затем функцию зависимости потенциала действия нейронов первичной слуховой коры от частоты проигрываемого звука.
Ученые обнаружили, что присутствие белого шума на фоне проигрываемого звука вызывает уменьшение частоты спайков (колебаний потенциала при возбуждении нейрона): на 14,2 процента до начала и на 26,1 процента во время пиковой активности. Подобное изменение наблюдалось во всех селективно активируемых участках первичной слуховой коры независимо от частотных характеристик стимула. Также оказалось, что количество звуковых частот, восприятие которых происходит с пиковой частотой спайка, значительно (p = 0,0004) ниже при наличии белого шума, чем без него. Это, в свою очередь, говорит о том, что селективность первичной слуховой коры при шуме выше, а сам шум при этом восприятие никак не задевает.
Чтобы проверить, как снижение ответа слуховой коры в ответ на звуковую стимуляцию при наличии шума влияет на поведенческие аспекты слухового восприятия, ученые провели эксперимент с использованием экспериментальной парадигмы go/no go. В нем они обучили мышей получать угощение (капельки соевого молока) в ответ на звук определенной частоты и наказание (поток воздуха) в ответ на звуки других частот при лизании специальной трубки. Анализ данных показал, что использование белого шума при звуковой стимуляции улучшает распознавание звуков, которые спектрально находятся рядом: так, с помощью шума мыши эффективнее разграничивали звуки, которые отличались друг от друга на 0,35 (p = 0,002) и 0,2 октавы (p = 0,001).
Для изучения подробного механизма влияния белого шума на активность нейронов слуховой коры ученые затем обратились к методам оптогенетики — селективной активации нейронов с помощью воздействия светом на вводимые в мембрану светочувствительные опсины. Исследователи ввели активирующий каналродопсин (ChR2) в парвальбумин-содержащие вставочные нейроны, которые регулируют передачу сигнала в сенсорных системах головного мозга. Оказалось, что селективная активация таких нейронов приводит к тому же результату, что и использование белого шума: величина спайков снижается на 18,8 процента до начала и на 35,6 процента во время пиковой активности. Так же, как и при использовании шума, наблюдалось и значительное (p = 0,0014) уменьшение количества частот, воспринимаемых при пиковой частоте спайка.
Оптогенетическая активации парвальбумин-содержащих нейронов также улучшила слуховую дискриминацию. Результаты оказались схожими с теми, которые были получены при использовании белого шума: также улучшилось разграничение звуков, отличающихся на 0,35 октавы (p = 0,021) и 0,2 октавы (p = 0,008).
Что касается конкретных участков мозга, которые вовлечены в регуляцию восприятия при воздействии белого шума и оптогенетической активации, то ученые также отметили работу коленчатого тела таламуса, которое также участвует в обработке слуховой информации. Эффект, однако, был не таким выраженным, как тот, который наблюдался при работе слуховой коры.
Авторы заключили, что изменение активности слуховой коры (с помощью либо белого шума, либо оптогенетической активации) меняют слуховое восприятие, улучшая его — причем этот эффект также проявляется и поведенчески. Возможное объяснение такого эффекта — в селективной дискриминации частот отдельными нейронами слуховой коры по сравнению с привычной спонтанной активностью в том случае, когда дополнительную стимуляцию не нужно отсеивать. Из этого, в свою очередь, можно сделать вывод, что сенсорные системы головного мозга (по крайней мере слуховая) лучше адаптированы для восприятия информации при определенном уровне дополнительного шума, что вполне объяснимо: значимые звуки на фоне абсолютной тишины для восприятия более непривычны.
Пользу белого шума уже неоднократно подтверждали: например, его успешно применяют для восстановления слуха после акустической травмы. Два года назад ученые показали, что прослушивание белого шума определенной интенсивности мешает реорганизации нейронных связей, которое наблюдается вследствие нарушения слуха после громких звуков. Слух, таким образом, не нарушается.
Елизавета Ивтушок
Но увеличиться в размерах им не удалось
Американские и бразильские исследователи представили результаты наблюдений за эволюцией клеток с синтезированным искусственно минимальным геномом. За две тысячи поколений они восстановили приспособляемость к внешним условиям, но не смогли увеличиться в размерах. Статья об этом опубликована в журнале Nature. В 2010 году сотрудники Института Дж. Крейга Вентера получили первую клетку с полностью искусственным геномом. Для этого они удалили собственную ДНК у бактерии Mycoplasma mycoides и заменили ее на несколько модифицированную, синтезированную в лаборатории. Она состояла примерно из миллиона пар азотистых оснований и содержала 901 ген. Клетка получила название JCVI-syn1.0. После этого исследовали задались целью выяснить, какой минимальный набор генов необходим клетке для самостоятельного выживания и размножения, и стали снабжать клетки все более урезанными геномами. О том, как это происходило, подробно рассказывает материал «Прожиточный минимум», вышедший в 2016 году, когда была создана версия JCVI-syn3.0 с минимальным геномом, который состоял всего из 473 генов. Этого оказалось недостаточно для устойчивого размножения и удобства экспериментов, и несколько генов пришлось добавить. Текущая версия JCVI-syn3B, о которой идет речь в новой работе, содержит 493 гена. На сегодняшний день это организм с наименьшим известным геномом, способный расти в чистой лабораторной культуре. Джей Ти Леннон (J. T. Lennon) из Университета Индианы с коллегами из Института Дж. Крейга Вентера и других научных центров Бразилии и США сравнили уровень накопления мутаций у организмов с минимальным и не минимальным геномами — JCVI-syn3B и JCVI-syn1.0. Чтобы минимизировать влияние естественного отбора, их предварительно акклиматизировали в стандартной жидкой питательной среде и последовательно выращивали несколько моноклональных популяций из одной забранной клетки. Оказалось, что среднее число мутаций на нуклеотид за поколение у них практически неразличимо: 3,25 × 10−8 против 3,13 × 10−8 (p = 0,667). Это наивысший уровень накопления мутаций, когда-либо зафиксированный у клеточных организмов, что соответствует имеющимся представлениям о том, что при меньшем геноме скорость мутаций выше (а у M. mycoides она высока изначально). Общее распределение мутаций по типам (инсерции, делеции, однонуклеотидные замены) также оказалось схожим (χ22 = 4,16; p = 0,125). Однако состав однонуклеотидных мутаций, которые составляли 88 процентов от общего количества, у JCVI-syn3B и JCVI-syn1.0 был разным. В обоих типах клеток замена гуанина или цитозина на аденин или тимин происходила значительно чаще, чем наоборот, однако степень этого неравновесия была разной: в 30 раз при не минимальном геноме и в 100 раз — при минимальном. Вероятно, это связано с отсутствием у последних гена ung, отвечающего за эксцизию неверно встроенного в ДНК урацила. Выяснив это, исследователи поставили эволюционный эксперимент, пронаблюдав за 2000 поколений в популяции из более чем 10 миллионов клеток. За такой период каждый нуклеотид их генома должен был мутировать более 250 раз, что создает неограниченное генетическое разнообразие для адаптации к среде. Таким образом, при прочих равных условиях потенциальная разница в путях естественном отборе между популяциями у JCVI-syn3B и JCVI-syn1.0 обусловлена только искусственным урезанием генома. Оказалось, что изначально она приводит к снижению максимальной скорости роста примерно наполовину. Однако этот показатель растет линейно со временем, и концу эксперимента приспособляемость клеток в двух группах практически сравнялась, а если оценивать ее относительно, то клетки с минимальным геномом эволюционировали на 39 процентов быстрее, и генетические паттерны эволюционных путей у них отличались. Наиболее выраженной особенностью JCVI-syn3B стало то, что в процессе эволюции их клетки не увеличивались в размерах, что обычно происходит при достатке питательных веществ (клетки JCVI-syn1.0 за это время увеличились в среднем на 85 процентов в диаметре и десятикратно в объеме). За это отвечали эпистатические эффекты мутаций в гене ftsZ прокариотического гомолога тубулина, который регулирует деление и морфологию клетки. Полученные результаты демонстрируют, что естественный отбор способен быстро повысить приспособляемость наипростейших автономно растущих организмов, причем минимизация генома открывает возможности вовлечения в эволюционный процесс ключевых генов, которые обычно эволюционируют медленно, пишут авторы работы. В 2022 году исследовательский проект LTEE представил результаты эволюционного эксперимента с 2000 поколений кишечных палочек с различными наборами исходных признаков. Оказалось, что, хотя генетическое разнообразие имеет существенное значение на ранних стадиях приспособления, основную роль в эволюционном процессе при бесполом размножении играют случайные мутации.