Искусственные клетки с минимальным геномом быстро адаптировались в процессе эволюции

Но увеличиться в размерах им не удалось

Американские и бразильские исследователи представили результаты наблюдений за эволюцией клеток с синтезированным искусственно минимальным геномом. За две тысячи поколений они восстановили приспособляемость к внешним условиям, но не смогли увеличиться в размерах. Статья об этом опубликована в журнале Nature.

В 2010 году сотрудники Института Дж. Крейга Вентера получили первую клетку с полностью искусственным геномом. Для этого они удалили собственную ДНК у бактерии Mycoplasma mycoides и заменили ее на несколько модифицированную, синтезированную в лаборатории. Она состояла примерно из миллиона пар азотистых оснований и содержала 901 ген. Клетка получила название JCVI-syn1.0. После этого исследовали задались целью выяснить, какой минимальный набор генов необходим клетке для самостоятельного выживания и размножения, и стали снабжать клетки все более урезанными геномами. О том, как это происходило, подробно рассказывает материал «Прожиточный минимум», вышедший в 2016 году, когда была создана версия JCVI-syn3.0 с минимальным геномом, который состоял всего из 473 генов. Этого оказалось недостаточно для устойчивого размножения и удобства экспериментов, и несколько генов пришлось добавить. Текущая версия JCVI-syn3B, о которой идет речь в новой работе, содержит 493 гена. На сегодняшний день это организм с наименьшим известным геномом, способный расти в чистой лабораторной культуре.

Джей Ти Леннон (J. T. Lennon) из Университета Индианы с коллегами из Института Дж. Крейга Вентера и других научных центров Бразилии и США сравнили уровень накопления мутаций у организмов с минимальным и не минимальным геномами — JCVI-syn3B и JCVI-syn1.0. Чтобы минимизировать влияние естественного отбора, их предварительно акклиматизировали в стандартной жидкой питательной среде и последовательно выращивали несколько моноклональных популяций из одной забранной клетки. Оказалось, что среднее число мутаций на нуклеотид за поколение у них практически неразличимо: 3,25 × 10−8 против 3,13 × 10−8 (p = 0,667). Это наивысший уровень накопления мутаций, когда-либо зафиксированный у клеточных организмов, что соответствует имеющимся представлениям о том, что при меньшем геноме скорость мутаций выше (а у M. mycoides она высока изначально).

Общее распределение мутаций по типам (инсерции, делеции, однонуклеотидные замены) также оказалось схожим (χ22 = 4,16; p = 0,125). Однако состав однонуклеотидных мутаций, которые составляли 88 процентов от общего количества, у JCVI-syn3B и JCVI-syn1.0 был разным. В обоих типах клеток замена гуанина или цитозина на аденин или тимин происходила значительно чаще, чем наоборот, однако степень этого неравновесия была разной: в 30 раз при не минимальном геноме и в 100 раз — при минимальном. Вероятно, это связано с отсутствием у последних гена ung, отвечающего за эксцизию неверно встроенного в ДНК урацила.

Выяснив это, исследователи поставили эволюционный эксперимент, пронаблюдав за 2000 поколений в популяции из более чем 10 миллионов клеток. За такой период каждый нуклеотид их генома должен был мутировать более 250 раз, что создает неограниченное генетическое разнообразие для адаптации к среде. Таким образом, при прочих равных условиях потенциальная разница в путях естественном отборе между популяциями у JCVI-syn3B и JCVI-syn1.0 обусловлена только искусственным урезанием генома. Оказалось, что изначально она приводит к снижению максимальной скорости роста примерно наполовину. Однако этот показатель растет линейно со временем, и концу эксперимента приспособляемость клеток в двух группах практически сравнялась, а если оценивать ее относительно, то клетки с минимальным геномом эволюционировали на 39 процентов быстрее, и генетические паттерны эволюционных путей у них отличались.

Наиболее выраженной особенностью JCVI-syn3B стало то, что в процессе эволюции их клетки не увеличивались в размерах, что обычно происходит при достатке питательных веществ (клетки JCVI-syn1.0 за это время увеличились в среднем на 85 процентов в диаметре и десятикратно в объеме). За это отвечали эпистатические эффекты мутаций в гене ftsZ прокариотического гомолога тубулина, который регулирует деление и морфологию клетки.

Полученные результаты демонстрируют, что естественный отбор способен быстро повысить приспособляемость наипростейших автономно растущих организмов, причем минимизация генома открывает возможности вовлечения в эволюционный процесс ключевых генов, которые обычно эволюционируют медленно, пишут авторы работы.

В 2022 году исследовательский проект LTEE представил результаты эволюционного эксперимента с 2000 поколений кишечных палочек с различными наборами исходных признаков. Оказалось, что, хотя генетическое разнообразие имеет существенное значение на ранних стадиях приспособления, основную роль в эволюционном процессе при бесполом размножении играют случайные мутации.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Нарушения сна при болезнях сердца вызвала иммунная денервация эпифиза

Ее произвели макрофаги в верхнем шейном нервном узле

Немецкие и американские исследователи пришли к выводу, что расстройства сна при хронических заболеваниях сердца связаны с нарушением симпатической иннервации шишковидного тела, вырабатывающей мелатонин, связанными с сердцем провоспалительными иммунными клетками. Публикация об этом появилась в журнале Science. У людей и других млекопитающих смену периодов сна и бодрствования контролирует секреция мелатонина, синхронизированная с 24-часовым циклом смены дня и ночи на Земле. Этот гормон вырабатывает шишковидное тело (эпифиз), расположенное в надталамической области головного мозга, в ответ на уровень симпатической иннервации из верхнего шейного узла. Помимо эпифиза и некоторых других органов этот узел иннервирует и сердце. Известно, что при хронических сердечных заболеваниях зачастую снижается уровень мелатонина и возникают сопутствующие нарушения сна, которые негативно сказываются на течении болезни и качестве жизни пациента. Механизмы этого явления изучены не были, при этом они могли бы дать почву для разработки новых методов лечения. Чтобы разобраться в этом вопросе, сотрудники различных научных центров Германии и США под руководством Штефана Энгельхардта (Stefan Engelhardt) из Мюнхенского технологического института изучили посмертные препараты эпифизов семи человек с кардиологическими заболеваниями и девяти без них. Оказалось, что при болезнях сердца значительно снижена плотность аксонов (то есть иннервация) в этой железе. Выяснив это, авторы работы перешли к экспериментам на мышах с двумя искусственно вызванными заболеваниями сердца: перегрузкой левого желудочка давлением путем хирургического сужения аорты и сердечной недостаточностью с сохранной фракцией выброса. Уровень мелатонина у таких животных был снижен, что сопровождалось нарушениями циркадианных ритмов. Генетическая маркировка помогла выявить у них резкое снижение симпатической иннервации эпифиза без нарушения его внутренней структуры и анатомического окружения. Морфометрическое и гистологическое исследование верхнего шейного узла продемонстрировало его значительную гипертрофию с замещением фиброзной соединительной тканью, что свидетельствует о тяжелом, возможно необратимом повреждении органа. Аналогичные изменения исследователи увидели на посмертных препаратах верхних шейных узлов кардиологических пациентов — рубцовая ткань замещала до 70 процентов их объема. При этом степень поражения узла значительно коррелировала со степенью ремоделирования миокарда в результате заболевания. Это подтвердили у живых пациентов с помощью УЗИ, а также обнаружили у них связь размеров верхнего шейного узла с фракцией выброса (функциональным показателем сердечной деятельности). После этого авторы работы выполнили секвенирование РНК одиночных клеток и ядер верхнего шейного узла мышей с кардиологическими заболеваниями, а также иммуногистохимическое окрашивание разных пулов его клеток и нервных связей с эпифизом. Выяснилось, что симпатическая иннервация железы значительно снижалась еще до декомпенсации сердечной недостаточности, и что при этом узел инфильтрирован провоспалительными макрофагами. В нервных узлах, не иннервирующих сердце, подобной инфильтрации не наблюдалось, уровни биомаркеров общего воспаления повышены не были, что свидетельствует о связи этих макрофагов именно с заболеванием сердца. Схожую картину удалось пронаблюдать и в посмертных образцах кардиологических пациентов. Транскриптомное профилирование межклеточных взаимодействий в верхнем шейном узле мышей на ранних стадиях болезни сердца показало, что сильнее всего нарушены связи между макрофагами и симпатическими нейронами, иннервирующими шишковидное тело. Еженедельные инъекции ингибитора макрофагов клодроната в этот узел сразу после операции по сужению аорты предотвращали денервацию железы и снижение уровня мелатонина. Эксперименты по совместному выращиванию клеток на питательной среде, подтвердили, что центральную роль в гибели симпатических нейронов играют активированные провоспалительные макрофаги. В 2020 году французские ученые обнаружили, что если люди засыпают позже привычного времени, то во время сна и на следующий день пульс у них значительно превышает норму. То же происходит и при засыпании на более чем полчаса раньше обычного, однако пульс при этом возвращается к норме уже через несколько часов сна. Годом позже британские исследователи показали, что с наименьшим риском сердечно-сосудистых заболеваний связан отход ко сну между 22 и 23 часами.