Астрономы пришли к выводу, что за рекордную яркость некоторых спутников Сатурна в радиодиапазоне отвечает не только слой чистого льда, но и специфические структуры под поверхностью этих тел. Тем не менее, природа этих рассеивающих структур пока не ясна. Доклад с результатами был представлен в Женеве на совместной конференции Конгресса европейского планетарного общества и Американского астрономического общества.
Внутренние луны Сатурна являются самыми радиояркими объектами в Солнечной системе, то есть они отражают наибольшее количество радиоволн. Это говорит о специфических свойствах поверхности этих тел. В частности, усредненное по всей поверхности альбедо на длине волны в 2,2 сантиметра для Энцелада составляет 2,96 ± 0,39, а для ряда других спутников также превышает единицу.
Известно, что поверхности этих лишенных атмосферы тел постоянно изменяются, так как они взаимодействуют с веществом колец. Также кора ледяного спутника Энцелада иногда раскалывается, а из трещин поднимаются струи очень чистой воды из подповерхностного жидкого океана. Эта вода превращается в лед, который также оседает как на сам Энцелад, так и на соседние спутники, такие как Мимас, Тетис, Диона и Рея.
В докладе астрономов из Франции и США представлен финальный анализ всех радионаблюдений системы Сатурна аппаратом «Кассини», который находился у планеты в 2004–2017 годах. Оказалось, что чистоты льда недостаточно для объяснения ни величины альбедо, ни зафиксированной слабой зависимости от угла падения радиоволн.
«Принятые нами суперяркие радарные сигналы требуют как минимум нескольких десятков сантиметров снежного покрова, — говорит ведущий автор работы Элис Ле Галл (Alice Le Gall) из института LATMOS в Париже. — Однако только состав не может объяснить зафиксированный экстремальный уровень яркости. Радарные волны могут проникать сквозь прозрачный лед на глубину до пары метров, поэтому у них больше возможности отразиться от погруженных структур. Подповерхностный слой внутренних лун Сатурна должен содержать высокоэффективные отражатели, которые преимущественно направляют падающие радиоволны назад к их источнику».
Природа отражающих структур пока остается неизвестной. Высказывались предположения, что такой эффект может возникать благодаря когерентному обратному рассеянию на специфических неоднородностях во льду. Это явление связано с конструктивной интерференцией движущихся в обратном направлении волн. Однако даже для объяснения радиоальбедо Европы, которая в два раза тусклее Энцелада, уже требуется заполнение отражающего слоя на 80 процентов по объему нужными неоднородностями.
Известно, что поверхность Энцелада покрыта множеством различных особенностей, таких как крупные блоки льда, конусообразные возвышения и плотные скопления трещин. Однако способность таких деталей рельефа создать необходимый эффект не доказана. В связи с этим авторы заключают, что однозначного понимания причины высокого радиоальбедо Энцелада пока нет.
От редактора
В заголовке и первом абзаце заметки при публикации ошибочно был указан Юпитер вместо Сатурна.
Ранее сообщалось, что на Энцеладе найдены сложные органические молекулы, а жизнеспособность земных архей проверили условиями Энцелада. Другой нерешенной проблемой системы Сатурна является возраст его колец, который одни ученые считают относительно небольшим, а другие — сравнимым со временем жизни Солнечной системы.
И увидел в ней белого карлика
Инфракрасный космический телескоп «Джеймс Уэбб» получил изображение планетарной туманности Кольцо. На снимке хорошо различимы белый карлик и сложная внутренняя структура туманности, возникшей при смерти звезды массивнее Солнца, сообщается на сайте Университета Манчестера. М57 (или Кольцо) находится на расстоянии 2,5 тысячи световых лет от Земли в созвездии Лиры и хорошо известна астрономам-любителям, так как ее достаточно легко найти и наблюдать в телескоп. Туманность образовалась на финальной стадии жизни звезды в несколько раз массивнее Солнца около четырех тысяч лет назад, когда красный гигант сбросил свои внешние оболочки в космос. В центре туманности находится углеродно-кислородный белый карлик, чье ультрафиолетовое излучение заставляет газ светиться. Группа астрономов под руководством Майка Барлоу (Mike Barlow) из Университетского колледжа Лондона и Ника Кокса (Nick Cox) из компании ACRI-ST опубликовала новое изображение туманности М57, полученное «Джеймсом Уэббом» при помощи камеры ближнего инфракрасного диапазона NIRCam и набора узкополосных фильтров. На снимке хорошо заметен белый карлик, а также сложная внутренняя структура туманности, включающая в себя внешние линейные структуры, происхождение которых до конца не ясно. Также видны внутренние сгустки и узлы плотного газа, которые образовались при взаимодействии расширяющегося горячего газа с более холодным газом, выброшенным звездой ранее, и еще не разрушились звездным ветром от белого карлика. Некоторые из этих сгустков приобрели хвостатую форму. Ранее мы рассказывали о том, как «Джеймс Уэбб» рассмотрел туманность-бабочку вокруг очень молодой звезды.