Коллаборация из нескольких американских научных институтов продемонстрировала собственную разработку в области сверхпроводящих магнитов для будущего коллайдера. Дипольное поле новой установки достигает 14,1 тесла при рабочей температуре в 4,5 кельвин. Это значение почти равно целевому показателю в 16 тесла, заложенному в концепцию будущего ускорителя частиц с энергией столкновения около 100 тераэлектронвольт против 13 у Большого адронного коллайдера, пишет CERN Courier.
Коллайдеры — это разновидность ускорителей частиц, которые сталкивают разогнанные объекты. Наиболее мощной установкой подобного типа является Большой адронный коллайдер (БАК), который способен достигать энергии соударения встречных пучков протонов на уровне в 13 тераэлектронвольт.
Когда строился БАК, одной из ведущих теоретических идей в физике высоких энергий была суперсимметрия. Эта концепция предполагает, что у всех известных частиц существуют суперпартнеры, обладающие противоположными свойствами. Например, входящим в твердо установленную Стандартную модель кваркам соответствуют скварки. Причем, если кварки относятся к классу фермионов (полуцелый спин), то скварки являются бозонами (обладают целым спином).
В случае идеальной точной суперсимметрии частицы и их суперпартнеры должны быть похожи, например, массой. Однако эта симметрия может быть нарушена, что приводит к отличию параметров. Предполагалось, что массы суперпартнеров могут находиться в доступном на БАК диапазоне в сотни гигаэлектронвольт. В таком случае они бы рождались в столкновениях, о чем можно было бы судить по данным детекторов.
Гипотеза суперсимметрии в теории решала ряд острых проблем, таких как иерархия масс и значения бегущих констант связи. Также существовала надежда, что открытие подобных частиц поможет продвинуться в понимании темной материи, так как одно из популярных объяснений предполагало существование слабовзаимодействующих массивных частиц (вимпов), а некоторые суперпартнеры подходили на эту роль. Тем не менее, никаких подобных частиц на БАК открыть не удалось, а гипотеза вимпов также сегодня считается значительно менее вероятной, чем 20 лет назад.
В связи с этим прорабатывается проект намного более крупного коллайдера, который носит название Future Circular Collider (FCC) — Будущий циклический коллайдер. Длина его кольца должна составить уже около 100 километров против 26,7 у БАК. Энергия соударений при этом должна возрасти примерно в 10 раз до 100 тераэлектронвольт. Для этого необходима разработка множества новых технологий, в том числе новых источников магнитного поля, которые позволяет частицам двигаться по изогнутому тоннелю.
Магнитное поле создается в БАК 1232 дипольными магнитами — охлажденными до 1,9 кельвин катушками из сверхпроводника, по которым течет ток в 12 килоампер, что позволяет генерировать поле с индукцией в 8,3 тесла. Для работы FCC предполагается разработка источников поля индукцией в 16 тесла, но пока устойчивой генерации достичь не удалось.
Объединенный коллектив американских физиков из Фермилаба, Национальной лаборатории Лоуренса в Беркли, Национальной лаборатории высоких магнитных полей и Брукхейвенской национальной лаборатории представили собственную разработку — сверхпроводящий магнит MDPCT1 на основе станнида триниобия Nb3Sn, создающий поле в 14,1 тесла при 4,5 кельвинах. Для данной температуры это рекордное значение, хотя созданный учеными из ЦЕРН магнит FRESCA 2 генерирует 14,6 при 1,9 кельвинах, но 13,9 при 4,5.
В новом магните используется станнид триниобия вместо более дешевого применяемого в существующих магнитах БАК сплава ниобий-титана Nb-Ti. Это связано с тем, что Nb3Sn выдерживает критическое поле до 30 тесла с сохранением сверхпроводимости, в то время как у Nb-Ti выход происходит при 15 тесла. Также в проводах из Nb3Sn может протекать критической ток плотностью до 1500 ампер на квадратный миллиметр при 16 тесла и 4,2 кельвинах, что примерно на 50 процентов больше, чем у современных.
Ученым пока не удалось достигнуть целевого показателя в 16 тесла, но физики отмечают, что это и другие недавно реализованные технологии вселяют уверенность, что заложенные в проект будущего коллайдера параметры реалистичны. Исследователи считают, что при оптимизации текущей установки можно добиться генерации 15 тесла. Всего для FCC понадобится создание 5000 дипольных магнитов.
Разработка сверхпроводящих магнитов для БАК в прошлом привела к продвижениям не только в физике высоких энергий, но и в других областях. В частности, это сильно удешевило промышленное производство подобных устройств и послужило основой широкого распространения магнитной томографии, в которой используются подобные магниты. Новые технологии также могут привести к улучшению медицинского оборудования.
Ранее в ЦЕРН испытали сильнейшие сверхпроводящие магниты. Также физики решили модифицировать систему охлаждения Большого адронного коллайдера для обогрева окружающих домов излишками тепла. Полноценный доклад о Будущем циклическом коллайдере был опубликован в начале этого года.
Тимур Кешелева
Он распался на кислород <sup>24</sup>O и четыре нейтрона
Японские физики синтезировали самый тяжелый на сегодняшний день изотоп кислорода 28O с магическим числом и нейтронов, и протонов. Он оказался нестабильным, несмотря на предсказанные для него магические свойства, и моментально распадался на четыре нейтрона и кислород 24O. По мнению авторов статьи в Nature, эти результаты указывают на сложную структуру нейтронной оболочки 28O с близкими по энергии возбужденными состояниями. Стабильность изотопов физики описывают разными теоретическими моделями. В частности, некоторые из них предсказывают высокую стабильность изотопов с определенным — магическим — числом протонов и нейтронов. Для протонов магическими являются числа Z = 2, 8, 20, 50, 82, 114, 126, а для нейтронов — числа N = 2, 8, 20, 28, 50, 82, 126. В атомах с такими числами нейтронные и протонные оболочки ядра полностью заполнены, а основное и возбужденные состояния сильно отличаются по энергии — это приводит к повышенной стабильности ядра. Особенно устойчивыми являются дважды магические ядра, в которых одновременно заполнены и протонная, и нейтронная оболочки — например, самый распространенный изотоп кислорода 16O. Для кислорода также известны более тяжелые изотопы с большим количеством нейтронов. Все они, начиная с 19O и заканчивая 26O, неустойчивы. При этом, согласно теоретическим представлениям, дважды магическое ядро 28O может быть устойчивым, хотя оно и содержит очень большое количество нейтронов. Тем не менее получить этот изотоп до сих пор не получалось. Впервые синтезировать кислород 28O удалось физикам под руководством Ёсуке Кондо (Yosuke Kondo) из Института физико-химических исследований RINKA в Японии. Для этого ученые облучали вращающуюся мишень из бериллия 9Be пучком ядер кальция 48Ca. При этом получались разные легкие ядра, из которых с помощью спектрометра физики отсеяли ядра фтора 29F и направили их на мишень из жидкого водорода. При этом из фтора образовались изотопы кислорода 27O и 28O. Далее, с помощью спектрометров физики смогли детектировать продукты их быстрого распада — нейтроны и кислород 24O. Рассчитанная учеными энергия распада составила 0,5 мегаэлектронвольта для 28O и 1,09 мегаэлектронвольта для 27O. Исходя из того, что энергия распада 27O и 25O больше, чем у 28O, физики сделали вывод, что изотоп 28O разложился ступенчато — сначала образовался изотоп 26O и два нейтрона, а затем 26O превратился в 24O и еще два нейтрона. Далее, физики провели расчеты нуклонной структуры 28O на основе теории χEFT (chiral effective field theory) и метода связанных кластеров (coupled-cluster method). Расчеты показали, что нестабильность ядра 28O связана с нестандартным расположением его нейтронных оболочек, которое приводит к заселению возбужденных состояний ядра с низкой энергией (intruder states). В результате физики впервые получили изотоп кислорода 28O и провели теоретические расчеты, объясняющие его нестабильность нестандартной структурой нейтронных оболочек. Тем не менее, прямые доказательства немагичности нейтронной структуры 28O еще предстоит найти. Ранее мы рассказывали о том, как физики получили самый тяжелый изотоп кальция.