Физики теоретически исследовали квазикристаллический сверхпроводник, помещенный в сильное магнитное поле при низкой температуре. Оказалось, что в таком случае в веществе должна возникнуть необычная форма сверхпроводимости, для которой характерна неоднородность в пространстве, пишут авторы в журнале Physical Review Research.
Квазикристаллы — это вещества с упорядоченной структурой, но отсутствием дальнего порядка. Они характеризуются запрещенными симметриями, то есть расположение атомов в них соответствует пересечению трехмерного пространства со строго периодической структурой в пространстве более высокой размерности.
В дополнение к отсутствию строгой периодичности квазикристаллы обладают свойством фрактальности на различных масштабах. Из-за этого, в отличие от обычных кристаллов, в них невозможно определить полноценное обратное пространство, координатами которого являются импульсы частиц. В связи с этим электронные свойства квазикристаллов сложно исследовать, так как для них неприменимы многие понятия, такие как поверхности Ферми.
Стандартная теория сверхпроводимости (модель Бардина — Купера — Шриффера, БКШ) предполагает объединение в пары электронов с противоположными импульсами. Так как в квазикристалле существуют проблемы с определением импульса, то такое вещество кажется неподходящим для возникновения сверхпроводящей фазы. Тем не менее, в 2018 году ученые выяснили, что связанные со сверхпроводимостью явления наблюдаются в сплаве с квазикристаллической структурой, хотя в данном случае нельзя утверждать о строгой зависимости между этими феноменами.
В работе физиков Сиро Сакаи (Shiro Sakai) и Рётаро Арита (Ryotaro Arita) из Института физико-химических исследований RIKEN в Японии теоретически исследуются свойства квазикристалла при низких температурах и сильных магнитных полях. Авторы рассматривают плоский слой из примерно 11 тысяч атомов, уложенных в мозаику Пенроуза — хорошо известный пример фрактального замощения плоскости при помощи двух одинаковых фигур, соответствующих одному из простейших вариантов квазикристалла.
Сакаи и Арита уже ранее изучали такую структуру в контексте сверхпроводимости, рассматривая ее в рамках модели Хаббарда, описывающей поведение частиц твердого тела и часто применяемой для обычных сверхпроводников. Они обнаружили, что отсутствие поверхностей Ферми не мешает существованию сверхпроводящего состояния, которое, однако, невозможно описать теорией БКШ.
Добавление магнитного поля позволило предсказать существование нового режима сверхпроводимости при величине поля, близкой к критической, свыше которого сверхпроводимость разрушается. Этой фазе оказалось свойственно меняющееся в пространстве значение параметра порядка — ширины сверхпроводящей энергетической щели.
Эта ситуация напоминает редкую фазу Фульде — Феррелла — Ларкина — Овчинникова (ФФЛО), которая также неоднородна. В случае ФФЛО сверхпроводящая электронная жидкость формирует стоячие волны в пространстве, из-за чего плотность электронов зависит от координат. Настоящую ФФЛО очень трудно поймать в эксперименте, впервые ее зафиксировали только в 2014 году.
Однако новая фаза заметно отличается от ФФЛО, так как в ней узор пространственной переменности параметра обладает запрещенной симметрией пятого порядка, соответствующей геометрии решетки Пенроуза. Тем не менее авторы отмечают, что новый подход может стать основой и для детального изучения фазы ФФЛО.
Ранее физики реализовали квантовый симулятор на квазикристаллической решетке, предсказали сверхпроводимость при 200 градусах Цельсия, доказали настраиваемый характер сверхпроводимости муаровой сверхрешетки из графена и нашли необычное соединение, в котором появляется магнитное поле при сверхпроводящем переходе.
Тимур Кешелава
Или температура ядра должна быть существенно выше
Японские геофизики обнаружили, что либо дефицит плотности, либо температура ядра Земли должны быть существенно больше предыдущих оценок. Такой вывод они сделали на основе уточненных измерений при экстремально высоких давлениях, на уровне нескольких мега атмосфер. Исследование опубликовано в журнале Science Advances.