Французский разработчик научил алгоритм создавать планы помещений с расставленной в них мебелью. Автор опубликовал как описание алгоритма, так и его онлайн-версию, попробовать которую может любой желающий.
Одна из задач в области обработки изображений с помощью нейросетевых алгоритмов — так называемое междоменное преобразование объектов (image-to-image translation). Она заключается в том, чтобы поменять стиль картины, изменить время дня на снимке или провести другое преобразование изображения, оставив при этом его суть. В 2017 году такие алгоритмы получили относительно большую популярность благодаря алгоритму pix2pix, способному превращать наброски пользователя в фотореалистичные портреты. Ранее мы проверили работу этого алгоритма на мемах. Увидеть результат можно в материале «Изображая мемы».
Разработчик Станислас Шайю (Stanislas Chaillou), выпускник Федеральной политехнической школы Лозанны и Гарвардской школы дизайна, использовал pix2pix, чтобы рисовать планы помещений. Алгоритм, созданный им в рамках работы над магистерской диссертации, представляет собой конвейер, состоящий из трех отдельных моделей pix2pix, обученных на разных данных.
Первая модель создает «след» от здания — его вертикальную проекцию. Она была обучена на данных о зданиях в Бостоне из геоинформационной системы. Датасет для обучения состоял из пар изображений, на одном из которых были контуры земельного участка, а на втором контуры здания на участке. В результате нейросеть научилась достаточно хорошо создавать изображение второго типа по изображению первого типа.
Вторая модель берет контур здания, полученный в результате работы первой модели, но также требует участия пользователя. Он должен нанести на план окна и вход. После этого нейросеть сама размечает на плане помещения, а также стены и проемы между ними. Кроме того, она также делит созданные ей помещения на типы, заливая их соответствующим цветом. Эту модель Шайю обучил на более чем 800 размеченных планах квартир.
Наконец, третья модель берет цветной план квартиры и наносит на него мебель, причем соответствующую типам комнат. К примеру, она не расположит в ванной комнате большой обеденный стол. Как и предыдущие алгоритмы, эта модель была обучена на парах исходных и конечных изображений, однако программист не уточнил, откуда он взял эти данные.
Для демонстрации работы алгоритма Шайю разместил на своем сайте онлайн-версию алгоритма. Она позволяет самому нарисовать контуры квартиры и обозначить на ней вход и окна, после чего алгоритмы нарисуют на плане комнаты и мебель. При этом качество получаемого изображения достаточно низкое, особенно это касается мебели.
Ранее мы уже рассказывали о применении алгоритма pix2pix в архитектуре. В 2018 году программист из Саудовской Аравии представил браузерную реализацию этого алгоритма, способную в том числе создавать фотореалистичные изображения фасадов зданий на основе их схематичного представления.
Григорий Копиев
Теперь она может определять киберугрозы
Исследователи из Южной Кореи обучили языковую модель DarkBERT на текстах из даркнета. Люди общаются в даркнете иначе, чем в обычном интернете, в том числе используют свой сленг. Модель изучила этот язык, и теперь ее можно применять в задачах кибербезопасности. Препринт доступен на arXiv.org. Языковые модели сегодня применяют для изучения разных текстов. Это нейросети, которые обучились на большом количестве данных и хорошо выполняют задачи, связанные с пониманием речи. Популярные языковые модели основаны на архитектуре Transformer, которую придумали инженеры из Google — такие модели умеют фокусировать внимание на важных частях предложения. Языковые модели лучше всего понимают то, что похоже на примеры из обучающей выборки. Обычно они учатся на больших объемах текстов из интернета, поэтому понимают много чего: литературный язык, сообщения из социальных сетей, научно-популярные статьи. Но есть тексты, которые не попадают в обучающую выборку, в том числе тексты из даркнета. У них есть свои лингвистические особенности: словарный запас, распределение частей речи и даже синтаксис. Обычные языковые модели это не учитывают, потому что во время обучения не видели таких текстов. Выход есть — обучить языковую модель на материалах из даркнета. Даркнет — это часть интернета, которую не найти в обычных поисковиках вроде Яндекса или Гугла. Туда нельзя попасть через обычный браузер. Есть разные сервисы для входа в даркнет, авторы исследования использовали Tor. Люди в даркнете общаются анонимно, и их сложно отследить. Поэтому даркнет стал платформой для всякого незаконного, от утечек данных до торговли запрещенными веществами. Специалисты по кибербезопасности постоянно ищут способы мониторить и изучать тексты в даркнете. Группа ученых из Южной Кореи под руководством Сун Вон Шина (Seungwon Shin) из Корейского института передовых технологий собрала корпус текстов из даркнета и обучила на нем языковую модель DarkBERT. Сначала авторы составили списки сайтов с помощью инструмента поиска по даркнету. Затем они скачали 6 миллионов веб-страниц и превратили их в тексты. Для обучения использовали модель RoBERTa, основанную на архитектуре Transformer. После обучения на текстах даркнета получилась готовая модель DarkBERT. Ее качество сравнивали со стандартными моделями RoBERTa и BERT, которые обучались на обычных текстах. Тестировали модели на разных сценариях киберугроз. Например, иногда злоумышленники похищают конфиденциальные данные с сайтов и вымогают у их владельцев деньги. Если деньги не поступают, злоумышленники публикуют украденные данные. Нейросети получали текст сайта и решали задачу бинарной классификации: определить, размещают ли на нем утекшие данные. DarkBERT справился с этой задачей намного лучше (точность 84 процента у DarkBERT против 70 процентов у BERT и 44 процента у RoBERTa). Еще один пласт нелегальной активности в даркнете — это продажа запрещенных веществ. Авторы проверили, насколько хорошо разные модели понимают сообщения с форумов даркнета: нейросети выделяли ключевые слова в сообщениях о запрещенных веществах. Такие ключевые слова могут пригодиться сотрудникам правоохранительных органов, чтобы быстро искать сообщения о продаже веществ и определять продавцов. Эту задачу тестировали на DarkBERT и на похожей модели BERT, дообученной на тематическом сабреддите. Здесь DarkBERT снова обошел конкурента (точность определения топ-10 ключевых слов 60 процентов у DarkBERT против 40 процентов у BERT). В целом результаты показывают, что предобученная на текстах из даркнета нейросеть DarkBERT справляется с задачами кибербезопасности лучше, чем другие модели. Ее можно использовать, чтобы мониторить нелегальную активность в даркнете, вычислять преступников и предотвращать утечки данных. Но у DarkBERT есть свои ограничения. Во-первых, она умеет работать только с англоязычными текстами. Во-вторых, обучающую выборку из даркнета собирать сложно, потому что сайты непросто найти и превратить в тексты. А чем больше подходящих текстов, тем выше эффективность модели. Другие языковые модели тоже продолжают развиваться. Например, инженеры из Яндекса натренировали нейросеть на русскоязычных текстах и встроили ее в Алису.