Астрофизики изучили линзированные рентгеновские изображения пяти квазаров — ядер активных галактик, в центрах которых находятся активно поглощающие вещество сверхмассивные черные дыры. Ученым удалось определить параметры падающего вещества в наиболее близких к центральному объекту областях, из которых можно определить скорость вращения самой черной дыры. Результаты представлены в The Astrophysical Journal.
Квазары — это исключительно яркие активные ядра галактик, в которых центральные черные дыры активно поглощают вещество. Считается, что квазары представляют собой отдельный период эволюции крупных галактик, так как большинство из них находится на космологических расстояниях от Млечного Пути. Одна из важнейших задач при изучении квазаров — определение вращения черных дыр, так как оно связано с историей роста таких объектов, взаимодействием с окружающим веществом, размером последней устойчивой орбиты и инициацией релятивистских струй, которые могут оказывать воздействие на всю родительскую галактику.
Падающее на черную дыру вещество образует разогретый аккреционный диск и еще более раскаленное и разреженное гало вокруг. Рентгеновское излучение центров активных галактик характеризуется нетепловым спектром со степенной зависимостью и хорошо объясняется моделью, где относительно холодный аккреционный диск является источником ультрафиолетовых фотонов, которые в процессе обратного комптоновского рассеяния на очень горячих электронах в гало приобретают дополнительную энергию.
Часть получающихся высокоэнергетических фотонов попадает обратно на аккреционный диск, создавая отраженное излучение, одним из основных компонентов которого является линия высокоионизованного железа Fe Kα с энергией 6,4 килоэлектронвольт. Свойства излучения в этой линии (уширение, колебания максимума и другие) давно используют для определения характеристик аккреционного диска и черной дыры. Считается, что эта линия возникает очень близко к центру системы, строгих доказательств этому нет.
Синьюй Дай (Xinyu Dai) и его коллеги изучили при помощи рентгеновского телескопа «Чандра» пять квазаров, свет от которых при движении к наблюдателю испытал гравитационное линзирование на массивных галактиках, в результате чего мы видим несколько изображений.
Авторы обратили внимание, что изученные объекты все отклоняются в одну сторону от эмпирической закономерности Ивасавы — Танигути, которая связывает эквивалентную ширину лини Fe Kα с рентгеновской светимостью. Оказалось, что у всех пяти объектов эквивалентная ширина, то есть ширина линии с максимальным поглощением, площадь которой (интегральный поток) такой же, как у данной, больше предсказываемой на основе установленной зависимости.
Астрономы считают, что данное отклонение объясняется микролинзированием, то есть гравитационным линзированием на не очень массивном объекте, например звезде, которое не приводит к искажению формы источника, но является причиной кратковременного повышения яркости. Авторы аргументируют эту интерпретацию тем, что микролинзирование усилит свечение более ярких самых центральных областей, а светимости разных изображений квазара оказываются различны.
В рамках этой гипотезы ученые оценили область излучения линии Fe Kα: половина света оказалась излучена с расстояния в 5,9 — 7,4 гравитационных радиусов черных дыр, что намного меньше, чем область генерации непрерывного рентгеновского излучения. Близость расположения к центральной черной дыре можно использовать для оценки скорости ее вращения, так как из-за эффекта Лензе — Тирринга вращающиеся черные дыры допускают вращение по более близким орбитам. Вращения во всех случаях оказались велики — значение соответствующего параметра оказалось выше 0,7 при предельном значении в единицу, а в случае объекта Q 2237+0305 больше 0,92.
Недавно астрономы выделили особую популяцию «холодных квазаров», которые заполнили пробел в эволюции массивных галактик. Многие параметры центральной сверхмассивной черной дыры мы узнали, получив первое прямое изображение тени такого объекта в галактике M87. В частности, ученым удалось оценить вращение этого объекта, которое тоже оказалось крайне высоким, хотя точность в данном случае оставляет желать лучшего.
Тимур Кешелава
В теории их быть не должно
Астрономы обнаружили сразу две крупные экзопланеты у очень маломассивного красного карлика. Такое открытие не вписывается в стандартные теории формирования планет, которые предсказывают отсутствие таких экзогигантов. Препринт работы опубликован на сайте arXiv.org. Считается, что маломассивные звезды очень редко формируют вокруг себя крупные планеты, а в случае очень легких красных карликов, с массами менее 0,2-0,4 массы Солнца, процесс образования гиганта в протопланетном диске, согласно стандартной модели аккреции вещества на твердое ядро, идти не должен. Однако на сегодняшний день уже известна малочисленная, но существующая в реальности популяция экзогигантов вокруг звезд с малой массой, которая начала формироваться 25 лет назад, когда была открыта экзопланета GJ 876b. Поиск таких тел важен для уточнения теоретических моделей и обоснования исключений из них. Группа астрономов во главе с Хосе-Мануэлем Альменарой (Jose-Manuel Almenara) из Университета Гренобль-Альпы сообщила об открытии сразу двух крупных экзопланет на орбитах вокруг маломассивной звезды. Речь идет о красном карлике TOI 4860, наблюдения за которым велись при помощи транзитного метода космическим телескопом TESS и наземным телескопом ExTrA, а также метода радиальных скоростей при помощи спектрографов SPIRou и ESPRESSO, установленных на наземных телескопах. TOI 4860 относится к спектральному классу M3.5V, обладает массой 0,34 массы Солнца и радиусом 0,354 радиуса Солнца и находится на удалении 262,2 светового года от Солнца. Звезда характеризуется повышенной металличностью, демонстрирует низкий уровень активности, а ее возраст оценивается примерно в четыре миллиарда лет. Существование TOI-4860b было подтверждено, эта транзитная экзопланета обладает массой 0,273 массы Юпитера и радиусом 0,766 радиуса Юпитера, и, скорее всего, похожа на Сатурн. Она находится на близкой к круговой орбите с периодом 1,52 дня и средним расстоянием до звезды в 0,0181 астрономической единицы, а ее эффективная температура составляет 694 кельвина. Судя по близости к звезде, форма планеты должна искажаться приливными силами, а орбита будет уменьшаться со временем. Экзогигант представляется интересной целью для дальнейших наблюдений, в том числе спектроскопических исследований атмосферы. TOI-4860с пока что остается кандидатом в экзопланету. Ее орбита характеризуется вытянутостью (эксцентриситет 0,657), длиной большой полуоси 0,776 астрономической единицы и периодом 426,9 дня, при этом сама экзопланета не транзитная и обладает минимальной массой 1,66 массы Юпитера. Ранее мы рассказывали о том, как ученые нашли аномально долгопериодического экзогиганта у близкой к Солнцу звезды.