as

Нейросеть научила квадрокоптер мягкой посадке

Aerospace Robotics and Control at Caltech / YouTube

Американские инженеры разработали алгоритм управления, позволяющий дрону совершать посадку быстрее и плавнее, чем с использованием существующих алгоритмов. Этого удалось достичь благодаря обучению нейросетевого алгоритма учету экранного эффекта, возникающего при приближении к поверхности. Помимо стабилизированной посадки дрон также научился более стабильно перемещаться на небольшой высоте над неровным рельефом, рассказывают авторы статьи, представленной на конференции ICRA 2019.

Т-Банк // CTF

При обычном полете квадрокоптеры поддерживают себя на одной высоте, наклоняются и поворачивают в ту или иную сторону, управляя скоростью вращения винтов. Расчет скорости каждого винта происходит автономно, а оператор лишь дает высокоуровневые команды, такие как «лететь влево». Однако в некоторых условиях, таких как полет при сильном ветре или посадка, даже встроенные алгоритмы дронов испытывают трудности. В случае с посадкой управление усложняется, потому что к постоянной силе тяжести и полностью управляемой дроном тяге винтов добавляется третья сила, возникающая из-за отражения потока воздуха от находящейся рядом поверхности. Из-за этого квадрокоптеры с функцией автоматической посадки обычно совершают ее довольно жестко. Кроме того, некоторые из них перед самой посадкой ненадолго зависают в воздухе, что приводит к неэффективному расходу заряда аккумулятора.

Инженеры под руководством Суна Чжо Чуна (Soon-Jo Chung) из Калифорнийского университета в Ирвайне разработали алгоритм управления полетом квадрокоптера, позволяющий ему совершать равномерную и мягкую посадку, а также сохранять стабильную высоту при полете над неровной поверхностью. По сути, при полете вблизи поверхности модель поведения дрона можно упростить до трех составляющих: силы тяжести, суммарной силы, возникающей из-за вращения винтов, и неизвестной возмущающей силы, возникающей из-за экранного эффекта. Разработчики обучили нейросеть расчету третьей силы.

Авторы использовали нейросеть с функцией активации на основе линейной ректификации (ReLU). Кроме того, они использовали метод спектральной нормализации, позволяющей уменьшить разброс значений на выходе из нейросети и тем самым увеличить стабильность полета, а также увеличить генерализованность нейросети, то есть приспособленность для разных условий.

Для обучения инженеры попросили опытного оператора управлять квадрокоптером на разной высоте. В результате они собрали датасет, состоящий из последовательности параметров полета, в том числе рассчитанной возмущающей силы от экранного эффекта, а также команд оператора. Авторы проверили эффективность алгоритма с помощью эксперимента, в котором дрон под управлением нового и обычного алгоритмов летал над столом. Благодаря этому они получили возможность проверить, как внезапно возникающий экранный эффект влияет на стабильность полета. Выяснилось, что алгоритм значительно повышает стабильность поддержания высоты полета, а также уменьшает отклонения от курса вдоль и поперек.

Отклонение реальной траектории полета от расчетной во время эксперимента со столом

Guanya Shi et al. / ICRA 2019

В прошлом году швейцарские инженеры оснастили дрон нейросетевым алгоритмом, позволяющим ему быстро летать в изменяющейся обстановке. Они показали это на примере гоночной трассы с арками, которые перемещаются во время пролета трассы дроном.

Григорий Копиев

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Драка с роботом превратила самцов мух в умелых любовников

Вероятно, из-за выброса гормона октопамина