Американские инженеры разработали алгоритм управления, позволяющий дрону совершать посадку быстрее и плавнее, чем с использованием существующих алгоритмов. Этого удалось достичь благодаря обучению нейросетевого алгоритма учету экранного эффекта, возникающего при приближении к поверхности. Помимо стабилизированной посадки дрон также научился более стабильно перемещаться на небольшой высоте над неровным рельефом, рассказывают авторы статьи, представленной на конференции ICRA 2019.
При обычном полете квадрокоптеры поддерживают себя на одной высоте, наклоняются и поворачивают в ту или иную сторону, управляя скоростью вращения винтов. Расчет скорости каждого винта происходит автономно, а оператор лишь дает высокоуровневые команды, такие как «лететь влево». Однако в некоторых условиях, таких как полет при сильном ветре или посадка, даже встроенные алгоритмы дронов испытывают трудности. В случае с посадкой управление усложняется, потому что к постоянной силе тяжести и полностью управляемой дроном тяге винтов добавляется третья сила, возникающая из-за отражения потока воздуха от находящейся рядом поверхности. Из-за этого квадрокоптеры с функцией автоматической посадки обычно совершают ее довольно жестко. Кроме того, некоторые из них перед самой посадкой ненадолго зависают в воздухе, что приводит к неэффективному расходу заряда аккумулятора.
Инженеры под руководством Суна Чжо Чуна (Soon-Jo Chung) из Калифорнийского университета в Ирвайне разработали алгоритм управления полетом квадрокоптера, позволяющий ему совершать равномерную и мягкую посадку, а также сохранять стабильную высоту при полете над неровной поверхностью. По сути, при полете вблизи поверхности модель поведения дрона можно упростить до трех составляющих: силы тяжести, суммарной силы, возникающей из-за вращения винтов, и неизвестной возмущающей силы, возникающей из-за экранного эффекта. Разработчики обучили нейросеть расчету третьей силы.
Авторы использовали нейросеть с функцией активации на основе линейной ректификации (ReLU). Кроме того, они использовали метод спектральной нормализации, позволяющей уменьшить разброс значений на выходе из нейросети и тем самым увеличить стабильность полета, а также увеличить генерализованность нейросети, то есть приспособленность для разных условий.
Для обучения инженеры попросили опытного оператора управлять квадрокоптером на разной высоте. В результате они собрали датасет, состоящий из последовательности параметров полета, в том числе рассчитанной возмущающей силы от экранного эффекта, а также команд оператора. Авторы проверили эффективность алгоритма с помощью эксперимента, в котором дрон под управлением нового и обычного алгоритмов летал над столом. Благодаря этому они получили возможность проверить, как внезапно возникающий экранный эффект влияет на стабильность полета. Выяснилось, что алгоритм значительно повышает стабильность поддержания высоты полета, а также уменьшает отклонения от курса вдоль и поперек.
В прошлом году швейцарские инженеры оснастили дрон нейросетевым алгоритмом, позволяющим ему быстро летать в изменяющейся обстановке. Они показали это на примере гоночной трассы с арками, которые перемещаются во время пролета трассы дроном.
Григорий Копиев
Вероятно, из-за выброса гормона октопамина
Итальянские энтомологи придумали, как сделать выращенных в неволе самцов средиземноморских плодовых мух более успешными любовниками. Эксперименты показали, что если дать мужским особям этих насекомых подраться с роботизированной моделью сородича, то впоследствии они будут больше времени тратить на ухаживания за самками и спаривание с ними. Кроме того, у них вырастет процент успешных попыток спаривания. Как отмечается в статье для журнала Biological Cybernetics, результаты исследования повысят эффективность программ по сокращению численности насекомых, в ходе которых в дикую природу массово выпускают стерилизованных самцов. Среди насекомых много вредителей сельского хозяйства, переносчиков инфекций и инвазивных видов, угрожающих целым экосистемам. Один из наиболее эффективных и безопасных для окружающей среды методов борьбы с ними заключается в том, чтобы в большом количестве выращивать в неволе стерильных самцов определенных видов и выпускать их в природу. После того, как такие особи спарятся с дикими самками, те не дадут потомства. В результате местная популяция вида сократится или вовсе исчезнет. Несмотря на все достоинства этого подхода, у него есть и недостатки. Одна из проблем заключается в том, что выращенные в неволе и стерилизованные самцы приспособлены к жизни в природе хуже своих диких сородичей. Например, они зачастую плохо справляются с поиском и оплодотворением самок. Команда энтомологов под руководством Донато Романо (Donato Romano) из Школы передовых исследований имени Святой Анны в Пизе решила сделать выращенных в неволе самцов насекомых более успешными любовниками. Ученые сосредоточили внимание на средиземноморских плодовых мухах (Ceratitis capitata) — широко распространенных вредителях, личинки которых питаются плодами более 200 видов растений. С этими насекомыми часто борются, выпуская в природу стерилизованных самцов. Романо и его соавторы обратили внимание, что самцы средиземноморских плодовых мух агрессивно ведут себя по отношению друг к другу. Мужские особи этих насекомых занимают на листьях или плодах растений участки, где устраивают брачные демонстрации для привлечения самок. Хозяин участка ревностно защищает его от конкурентов, вступая с ними в ритуализированные поединки, включающие взмахи и удары крыльями, а также покачивания и толчки головой. Авторы предположили, что сражения с соперниками запускают в организме мух-самцов изменения, которые впоследствии позволяют им эффективнее привлекать и оплодотворять самок. Чтобы проверить данную идею, исследователи провели серию экспериментов с выращенными в неволе самцами плодовых мух. Они сажали по одной мужской особи за раз в прозрачный контейнер, на дне которого по окружности лежали пять дисков, вырезанных из листьев цитрусовых деревьев. После этого подопытных мух на двадцать минут оставляли в одиночестве, чтобы они заняли один из дисков в качестве демонстрационной площадки. Затем авторы помещали в центр окружности между дисками роботизированную модель самца, управляемую с помощью магнита, Ее направляли к диску, выбранному настоящим самцом, чтобы сымитировать вторжение соперника. Робомуха находилась у границ занятого участка тридцать секунд, после чего возвращалась в центр окружности на шестьдесят секунд. Данная последовательность действий повторялась в течение пятнадцати минут. Подопытные самцы видели в роботах соперников и демонстрировали агрессивное поведение, защищая от них свои участки. На следующем этапе к самцам плодовых мух, которые сразились с роботом, на час подсаживали половозрелых самок. Исследователи фиксировали, сколько времени у мужских особей займет вибрациями крыльями (это часть брачной демонстрации), как быстро они перейдут к совокуплению и как долго оно продлится. Кроме того, они оценивали, закончится ли попытка спариться успешно или самка отвергнет ухаживания. В качестве контрольной группы выступали самцы, которые не сталкивались ни с живыми, ни с роботизированными соперниками. В обеих группах было по 120 особей. Как и ожидали авторы, встреча с роботом-конкурентом помогла самцам плодовых мух эффективнее привлекать самок. По сравнению с сородичами из контрольной группы они дольше вибрировали крыльями, позже переходили к совокуплению и дольше оплодотворяли самок. В целом такие самцы тратили больше времени на ухаживания и спаривание. А их попытки совокупиться с самками чаще заканчивались успешно. Романо и его коллеги предполагают, что во время драки с соперником (настоящим или роботизированным) в гемолимфу мух-самцов выбрасывается большое количество октопамина — аналога норадреналина у беспозвоночных. Это соединение активирует октопаминергические нейроны и тем самым стимулирует агрессивное и брачное поведение. Авторы надеются, что результаты их исследования сделают проекты по контролю численности вредных насекомых более эффективными. Однако для этого нужно придумать, как тренировать стерилизованных самцов в промышленных масштабах. Ранее мы рассказывали о том, как нидерландские инженеры создали легкого летающего робота, который позволяет изучать механизмы, лежащие в основе полета насекомых. Несмотря на отсутствие хвоста он может управлять движением вокруг вертикальной оси с помощью движений крыльев, создающих крутящие моменты по остальным осям. Эксперименты с роботом позволили подтвердить гипотезу, согласно которой дрозофилы и некоторые другие насекомые используют аналогичный механизм во время резких поворотов.