Китайские физики применили методы машинного обучения для прогнозирования успеха экспериментов по росту монокристаллов на основе выбранных условий. Точность алгоритма достигла 81 процента, в то время как сами ученые, на чьих данных система обучалась, правильно подбирали условия лишь в 36 процентах случаев. Применение такой системы позволит экономить ресурсы и время исследователей, пишут авторы в журнале Chinese Physics Letters.
Монокристаллы — это макроскопические кристаллические тела, структура которых представляет единую непрерывную решетку. Такие вещества обладают особыми свойствами, сильно зависящими от конкретного соединения и вида кристаллической решетки. Некоторые давно нашли применения в технике (в частности, современная электроника во многом зависит от монокристаллов кремния), а другие необходимы для проведения современных научных изысканий во многих областях, таких как нелинейная оптика и физика конденсированного состояния. Например, для исследования квантового эффекта Холла или вейлевских полуметаллов требуются высококачественные кристаллы.
Однако получение крупных монокристаллов, особенно в случае сложных соединений, исключительно трудно, так как процесс их роста зависит от многих факторов, таких как температура, соотношения элементов, потоки веществ и многое другое. Чрезвычайно сложным является процесс получения монокристаллов тернарных соединений, то есть состоящих из трех различных химических элементов. Это связано с частым отсутствием фазовых диаграмм для таких случаев, то есть зависимостей фаз и составов получающихся соединений от параметров.
Физики под руководством Хун Дина (Hong Ding) из Китайской академии наук решили облегчить работу экспериментаторов и создали автоматический способ, который позволят заранее определить, вырастет ли нужный кристалл в заданных условиях. Для этого они рассмотрели рост кристаллов тернарных соединений широко распространенным методом раствор-расплавной кристаллизации и обучили систему машинного обучения на данных реальных экспериментов.
Авторы использовали два набора экспериментальных данных (649 и 115 опытов), причем в них фигурировало 65 различных химических элементов. Данные включали температурные кривые роста, элементный состав и соотношения исходных реагентов, а также условия проведения опытов. Успешный опыт завершался получением монокристалла, в неуспешном формирования нужного соединения не происходило. Для обучения использовалось 75 процентов данных, а на остальных тестировалась работа алгоритмов.
Исследователи применили четыре метода машинного обучения: методы опорных векторов (SVM), дерева решений, случайного леса и градиентного бустинга деревьев решений. Каждый алгоритм был независимо протестирован и по итогам дерево решений использовалось для определения наиболее важных параметров при выращивании данного кристалла, а SVM использовался в качестве предсказателя — он смог достичь результата в 81 процент на тестовой выборке, в то время как ученые выбирали подходящие условия лишь в 36 процентах экспериментов. Авторы отмечают, что использование подобной методики может привести к значительной экономии средств, человеческих ресурсов и времени.
«Мы использовали модель, полученную применением дерева решений к обучающей выборке, для анализа важных факторов роста монокристаллов. На основе этой информации мы применяли SVM для прогнозирования успешности выращивания кристалла в данных лабораторных условиях, — говорит соавтор работы Юй-Цзе Сунь (Yu-Jie Sun). — Точность нашего подхода будет увеличиваться по мере накопления экспериментальных данных для обучающей выборки».
Ранее машинное обучение позволило нарисовать лица людей по голосу, предсказать зарплату, находить протопланетные диски и определять магнитное поле на дальней стороне Солнца. В целом об этом подходе к искуственному интеллекту мы говорили в материале Азбука ИИ: «Машинное обучение».
Тимур Кешелава
На взлом одного смартфона ушло от 40 минут до 13 часов
Китайские ученые нашли в смартфонах шести крупных компаний (Samsung, Xiaomi, HUAWEI, Vivo, OnePlus, OPPO) уязвимости, которые позволяют взломать сканер отпечатков пальцев. Им удалось получить бесконечное количество попыток для разблокировки смартфонов, создать много искусственных отпечатков с помощью нейросетей и подобрать подходящий для разблокировки. Препринт доступен на arXiv.org. Аутентификация с помощью отпечатка пальца в смартфонах состоит из 4 этапов. Первый этап — это получение отпечатка. Когда палец касается сенсора, он делает несколько изображений отпечатка. Затем идет этап компенсации: чтобы улучшить качество изображений, с них удаляется шум. На следующем этапе алгоритмы проверяют текстуры, нажим и форму отпечатка. Их цель — отличить отпечаток настоящего человеческого пальца от, например, отпечатка пальца силиконовой руки. Хакеры могут использовать искусственные пальцы из разных материалов, чтобы взломать смартфон. На последнем этапе аутентификации полученный отпечаток сравнивается с правильным отпечатком из базы данных. В отличие от паролей, система не проверяет полное соответствие двух отпечатков. Вместо этого полученному отпечатку достаточно преодолеть заданный порог сходства с правильным. Если пробовать много разных отпечатков, один из них рано или поздно перейдет этот порог. Поэтому у сканеров отпечатков пальцев есть дополнительный метод усиления безопасности — это ограничение количества попыток. После нескольких безуспешных попыток зайти в смартфон система блокирует доступ. Китайские инженеры Чен Ю (Chen Yu) из компании Tensent и Хе Илинь (He Yiling) из Чжэцзянского университета придумали алгоритм BrutePrint, который может обмануть сканер отпечатков пальцев методом полного перебора. Они обнаружили две уязвимости Cancel-After-Match-Fail (CAMF) и Match-After-Lock (MAL), благодаря которым можно делать сколько угодно попыток аутентификации по отпечатку, а иногда и похитить отпечаток пальца пользователя, который хранится на смартфоне. Уязвимость CAMF основана на том, что за одну попытку аутентификации сканер обычно делает сразу несколько изображений отпечатков. Если убедить сканер, что множество разных изображений были сделаны за одну попытку, то можно пробовать бесконечно много отпечатков. Дело в том, что сканер может сделать три вывода по одному изображению: на нем правильный отпечаток, на нем неправильный отпечаток или в ходе сканирования случилась ошибка. Например, что-то произошло с оборудованием и вызвало сбой в программе. В случае такой ошибки попытка не заканчивается. Система BrutePrint нарушает контрольную сумму изображения отпечатка, которая как раз приводит к этой ошибке. Другая уязвимость MAL помогает обойти режим блокировки доступа после превышения числа неправильных попыток. В некоторых смартфонах во время выхода экрана из спящего режима режим блокировки доступа не работает. Этого хватает, чтобы внедриться в систему и запустить попытки доступа к сканеру отпечатков. Кроме того, в процессе сравнения отправленных отпечатков с правильными, которые хранятся в смартфоне, можно их похитить. Главный этап атаки — внедриться в систему сканирования и начать посылать ей изображения отпечатков, используя уязвимости CAMF и MAL. Для этого инженеры собрали систему, которая может перехватывать и менять сигнал между сканером отпечатков пальцев и процессором смартфона. В смартфоне сканер и процессор соединены интерфейсом, и атакующая система имитирует этот интерфейс: она тоже соединяется со сканером и процессором. В систему также входит карта памяти, на которой хранятся заранее подготовленные отпечатки пальцев для перебора. Авторы утверждают, что итоговая стоимость всех компонентов составила всего 15 долларов. Базу данных отпечатков для перебора можно собрать самостоятельно или найти в открытых источниках: научных исследованиях или утечках данных. Авторы сами сгенерировали данные для перебора. Важная часть атаки — это предобработка отпечатков, чтобы они выглядели реалистично и подходили для сенсора в конкретном смартфоне. Инженеры использовали нейросеть CycleGAN, которая умеет менять стиль изображения. Для эксперимента с каждым смартфоном авторы обучали нейросеть редактировать отпечатки, чтобы они были похожи на отпечатки с его сенсора. Инженеры провели десять экспериментов с разными смартфонами. Уязвимость CAMF сработала на всех моделях, но по-разному. Авторам удалось получить неограниченное количество попыток разблокировки на всех смартфонах с операционной системой Android и только 15 попыток на iOS. Кроме того, на айфонах ученым не удалось перехватить сигнал между процессором и сканером отпечатков пальцев. Дело в том, что iOS всегда шифрует этот сигнал, в отличие от Android. В итоге сканер не удалось взломать только на смартфонах компании Apple. На взлом остальных гаджетов ушло от 40 минут до 13 часов. Ученым также удалось похитить оригинальные отпечатки пальцев пользователей со всех смартфонов на платформе Android. Авторы предлагают несколько методов, которые помогут производителям смартфонов сделать сканеры отпечатков пальцев безопасней. Во-первых, избавиться от уязвимости CAMF: для этого нужно добавить проверку на количество ошибочных попыток, которые не дошли до этапа сравнения с правильным отпечатком. Чтобы устранить уязвимость MAL, нельзя отменять блокировку доступа. Наконец, нужно шифровать сигналы, которыми обмениваются сканер и процессор. Сканер отпечатков пальцев — не единственная система разблокировки, которую можно взломать. Вьетнамским инженерам удалось обмануть Face ID в iPhone X с помощью маски. Ее распечатали на 3D-принтере, налепили на нее нос и приклеили изображения губ и глаз. Сканер Face ID принял маску за настоящее лицо.