Ученые использовали нейросеть для определения пространственной структуры магнитного поля Солнца. Программа успешно справилась с получением карт распределения поля как на видимой, так и на обратной стороне светила. Результаты опубликованы в журнале Nature Astronomy.
Стандартным методом представления структуры магнитного поля Солнца являются магнитограммы, которые в графическом виде отображают его пространственные вариации, а одним из распространенных методов определения магнитного поля является картирование Зеемана—Доплера. Этот способ заключается в способности магнитного поля поляризовать излучение — по разности доплеровских скоростей, определенных в различных каналах поляризации, можно определить проекцию магнитного поля на луч зрения. Тем не менее, этот метод работает только на непосредственно наблюдаемой стороне звезды. В случае обратной стороны можно воспользоваться методами гелиосейсмологии, для которых необходимы только данные о видимой стороне, однако в таком случае качестве полученных данных значительно уступает прямым наблюдениям.
Сегодня за Солнцем наблюдает сразу несколько космических телескопов, в том числе американские Обсерватория солнечной динамики (SDO) и STEREO. Особенность второй миссии заключается в том, что она состоит из двух одинаковых аппаратов, которые независимо движутся по орбитам, близким к земной. В результате один из них постепенно все больше отстает от планеты, а второй — обгоняет. Это позволяет наблюдать светило с различных сторон и даже получать трехмерные изображения, используя стереоскопический эффект. Однако после череды проблем с электроникой и последовавшей потерей контроля над ориентацией данные со STEREO-B доступны только до 1 октября 2014 года.
Тэен Ким (Taeyoung Kim) из Университета Кенхи в Южной Корее и его коллеги натренировали алгоритм глубокого обучения создавать магнитограммы. Исходными для первой части работы были данные SDO: ультрафиолетовые снимки прибора Atmospheric Imaging Assembly (AIA) и измерения магнитного поля на луче зрения, проведенные инструментом Helioseismic and Magnetic Imager (HMI). Данные собирались каждые 12 часов в течение 2011–2017 годов. В результате получилось 4972 пар изображений и магнитограмм, из которых 4147 (все данные, кроме полученных в сентябре и октябре каждого года) использовались в качестве обучающей выборки, а оставшиеся 825 — в качестве тестовой.
В исследовании применялась генеративно-состязательная сеть, то есть комбинация двух нейросетей, одна из которых (генератор) создает образцы, а вторая (дискриминатор) пытается выбрать из них наиболее похожие на представленные в обучающей выборке. Авторы сравнили результаты работы алгоритма, то есть магнитограммы за сентябрь и октябрь, с данными прибора HMI. Оказалось, что программа качественно воссоздала структуру поля. В частности, результат ее работы соответствовал эмпирическому закону Хейла, который гласит, что в северном полушарии одна полярность всегда предшествует другой, а в южном полушарии наблюдается обратная ситуация. Полярность солнечного магнитного поля меняется на противоположную от цикла к циклу, но вся обучающая выборка была получена в течение 24 солнечного цикла, поэтому нейросеть в текущем виде эффективна при работе с четными циклами, а точность ее предсказаний при нечетных циклах необходимо отдельно проверять.
Тем не менее, созданные программой магнитограммы не во всем соответствовали измерениям. Например, угол между парами солнечных пятен разной полярности не всегда оказывался правильным. Авторы связывают эти расхождения с тем фактом, что излучение в ультрафиолетовом диапазоне рождается в переходной зоне между хромосферой и короной, в то время как магнитограмма строится по данным о фотосфере, расположенной значительно ближе к поверхности звезды.
Вторая часть работы была посвящена данным STEREO, которые можно использовать для генерации распределения магнитного поля на дальней стороне Солнца. Для проверки авторы взяли данные со спутника STEREO-B, который 4 июня 2013 года находился на -164 градуса гелиографической долготы, то есть получал изображения преимущественно обратной стороны. Прибор Extreme UltraViolet Imager (EUVI) на борту этого аппарата собирает данные в том же диапазоне, что и AIA на борту SDO, что позволило использовать обученную ранее сеть. Ученые отследили движение активной области 12087, которая в период с 4 по 13 июня 2014 года перешла с обратной стороны звезды на видимую с Земли. Астрономы заключают, что программа в целом правильно воспроизвела структуру магнитного поля, что позволяет получать данные о временной эволюции магнитной активности Солнца на любом участке, где есть данные ультрафиолетового диапазона.
Ученые заключают, что им удалось показать удачный пример непосредственного преобразования изображений с помощью нейросетевой модели. Они отмечают, что в области астрономии и геофизики часто имеется большое количество данных различных диапазонов, что потенциально позволяет применять подобные модели во множестве ситуаций. Непосредственно в случае наблюдения Солнца, такая модель позволяет лучше понимать временную эволюцию активных областей, которые являются источниками вспышек, определяющих космическую погоду.
Магнитное поле Солнца значительно сложнее земного, подвержено намного более сильным изменениям как во времени, так и в пространстве. Подробно об исследованиях изменения земного поля мы писали в материале «Мой компас земной».
Тимур Кешелава
Также «Джеймс Уэбб» подтвердил открытие двух новых далеких галактик
Астрономы при помощи инфракрасной космической обсерватории «Джеймс Уэбб» опровергли существование одного из ранее открытых кандидатов в самую далекую галактику — им оказалась запыленная и более близкая к нам галактика. Кроме того, ученым также удалось подтвердить открытия двух очень далеких галактик. Статья опубликована в журнале Nature. Одним из основных направлений работы «Джеймса Уэбба» стал поиск и исследование далеких галактик, особенно тех, которые существовали в первый миллиард лет после Большого Взрыва. К настоящему моменту обнаружен целый ряд кандидатов в самые далекие галактики, однако измеренные фотометрические красные смещения галактик необходимо подтвердить при помощи спектроскопии. Группа астрономов во главе с Пабло Аррабалем Аро (Pablo Arrabal Haro) из Национальной исследовательской лаборатории оптики и инфракрасной астрономии Национального научного фонда представила результаты спектроскопических наблюдений при помощи прибора NIRSpec «Джеймса Уэбба» за тремя кандидатами в очень далекие галактики, первоначально найденными в рамках обзора CEERS по фотометрическим данным «Джеймса Уэбба». Открытия двух кандидатов в далекие галактики удалось подтвердить. Объект CEERS2_5429, обнаруженный в июле прошлого года, получил тогда прозвище «Галактика Мэйси», в честь того, что открытие было сделано в день рождения дочери основного автора работы. Определенное спектроскопически красное смещение галактики составило z = 11,44, что меньше, чем первоначальная фотометрическая оценка. Это означает, что галактика существовала спустя 390 миллионов лет после Большого взрыва. Второй подтвержденный кандидат имеет обозначение CEERS2_588, текущее значение красного смещения для него составляет 11,043. Обе галактики обладают звездными массами 108,6-8,7 масс Солнца и демонстрируют низкое поглощение излучения пылью и очень высокие темпы звездообразования. Что касается третьего объекта CEERS-93316, открытого в августе прошлого года, то ученые лишили его звания кандидата в древнейшую известную галактику, которое он получил из-за начальной оценки фотометрического красного смещения z=16,6. Спектроскопически измеренное значение красного смещения составляет z=4,912, что означает, что галактика существовала через примерно миллиард лет после Большого взрыва. По мнению ученых ошибка возникла из-за запыленности галактики и особенностей излучения межзвездной среды в ней, где идет звездообразование. Звание самой далекой галактики продолжает удерживать галактика JADES-GS-z13-0, которую тоже отыскал «Джеймс Уэбб».