Китайская компания DJI, производящая беспилотники, сделала октокоптер DJI Storm, который предназначен для аэросъемки с использованием кинокамер. Дрон не продается, но его можно арендовать, воспользовавшись услугами сервиса аэросъемки DJI Studio, причем беспилотник можно арендовать вместе с командой операторов, дополнительным оборудованием и даже грузовиком, сообщает DroneDJ.
Несмотря на то, что рынок беспилотников активно развивается, подавляющее большинство дронов с камерами, выпускаемых сегодня, ориентированы на любительскую или полупрофессиональную съемку — большинство серийных мультикоптеров просто не сможет поднять в воздух полноценную кинокамеру из-за ее большого веса. Существуют единичные примеры платформ, ориентированных на аэросъемку кинокамерой — например, мультикоптеры Aerigon.
Теперь свою платформу для аэросъемки с использованием кинокамер создала DJI. Компания заспускает сервис аренды беспилотника и команды операторов DJI Studio, клиенты которого получат в свое распоряжение восьмироторный мультикоптер DJI Storm. Он построен по схеме квадрокоптера, но на каждом плече дрона установлено по два ротора — это не только усиливает тягу, но и обеспечивает в некоторой степени страховку от потери управления, если вдруг один из электромоторов в паре выйдет из строя. Кроме беспилотника и команды операторов DJI Studio также предлагает арендовать грузовик.
Мультикоптер оснащен встроенным подвесом Ronin 2 и может поднимать в воздух камеру и дополнительное оборудование суммарной массой до 18,5 килограмм — в демонстрационном видео дрон летает с кинокамерой ARRI Alexa LF. Беспилотник работает при температуре воздуха от -10 до +40 градусов Цельсия, разгоняется до 80 километров в час и может провести в воздухе 8–15 минут на сменном аккумуляторе. Для управления камерой предлагается использовать специализированные пульты Master Wheels и Force Pro.
На момент публикации новости DJI не опубликовала никаких подробностей о сроках запуска, стоимости и регионе оказания услуг сервиса DJI Studio. Также неизвестно, поступит ли когда-нибудь беспилотник Storm в продажу как самостоятельный продукт.
Коротко о дронах разных конструкций и классов можно почитать в материале «Десять дронов из десяти».
Николай Воронцов
И летать по заданной траектории
Инженеры разработали прототип миниатюрного орнитоптера под названием Bee++. В воздух он поднимается с помощью четырех крыльев, а его масса составляет 95 миллиграмм. Махолет управляется по тангажу, крену и рысканью и способен летать по заданной траектории. Статья с описанием робопчелы опубликована в журнале IEEE Transactions on Robotics. В последние годы становятся популярными разработки в области миниатюрных беспилотников, которые по размеру сопоставимы с насекомыми. Миниатюризация вынуждает инженеров отходить от ставшей уже классической схемы с воздушными винтами и электромоторами, так как использовать их эффективно в беспилотниках весом меньше грамма невозможно. Вместо этого инженеры используют схему орнитоптеров — летательных аппаратов, у которых подъемная сила создается за счет периодических взмахов крыльями. Для приведения их в движение обычно применяют пьезоэлектрические актуаторы, передающие усилие на крылья через механическую трансмиссию. Несмотря на то, что эта схема доказала свою работоспособность, большинство из созданных сегодня миниатюрных махолетов не имеют стабильного управления по оси рысканья. Эту проблему решили инженеры под руководством Нестора Переса-Арансибии (Nestor Perez-Arancibia) из Университета штата Вашингтон. Они построили миниатюрный орнитоптер, который управляется по всем трем осям. Микроорнитоптер, названный Bee++, представляет собой улучшенную версию орнитоптера, представленную авторами в 2019 году. Так же, как и предшественник, Bee++ имеет четыре машущих крыла, приводимых в действие индивидуальными пьезоэлектрическими актуаторами, а его масса составляет 95 миллиграмм. Сверху и снизу на корпус установлены восемь защитных стержней, которые предотвращают махолет от ударов об окружающие предметы. Питание прототип получает через провода. Несмотря на то, что крылья не имеют механизмов управления углом установки, плоскости их движения имеют заранее определенный наклон. Благодаря этому удается создавать крутящий момент по крену, тангажу и рысканью за счет изменения амплитуды движения пар крыльев. Например, для того чтобы наклонить махолет вперед, амплитуда пары крыльев, расположенных в передней части уменьшается, вследствие чего снижается генерируемая ими тяга. В результате орнитоптер наклоняется заданном направлении. Аналогичным образом происходит управление по оси крена с помощью боковых пар крыльев. Для поворотов по оси рысканья изменяют амплитуду движения пар крыльев, расположенных по диагонали. Набор или снижение высоты происходит при увеличении или снижении частоты взмахов всех четырех крыльев. Инженерам удалось увеличить частоту движений крыльями, что привело к увеличению тяги на 125 процентов по сравнению с предыдущей версией робопчелы, которая могла лишь держаться в воздухе, но не имела достаточной тяги для управления рысканьем. В испытаниях робопчела продемонстрировала хорошую управляемость по оси рысканья и способность разворачиваться на угол 90 градусов за 50 миллисекунд со скоростью около 1800 градусов в секунду, что сравнимо с характеристиками мухи дрозофилы. Также робопчела успешно продемонстрировала способность удерживать положение корпуса по оси рысканья при одновременном перемещении по сложной траектории. По словам разработчиков в будущем в созданную ими платформу можно будет интегрировать сенсоры, которые позволят системе управления робопчелы ориентироваться в пространстве. https://www.youtube.com/watch?v=m9lLO1QpdcE Ранее мы рассказывали об инженерах из США, создающих крупные орнитоптеры, которые внешне похожи на птиц. Для этого они используют чучела настоящих животных. Корпус одного из прототипов покрыт перьями кеклика, а в его передней части находится голова чучела этой птицы, а во втором беспилотнике используются настоящие крылья голубя.