Ученые использовали слабую флуоресценцию фотосинтезирующего пигмента растений хлорофилла для определения прироста массы хвойного леса, который трудно определить другими методами. Полученные результаты впервые позволили связать увеличение количества органического вещества вечнозеленой экосистемы с экспериментально определяемым свечением на масштабе сезона. Эти данные позволят определить реакцию лесов на изменение климата, пишут авторы в журнале Proceedings of the National Academy of Sciences.
Вечнозеленые леса северного полушария Земли содержат существенную долю всего органического углерода на планете, а также играют значительную роль в круговороте углерода в виде углекислого газа (CO2) между биосферой и атмосферой. В отличие от лиственных лесов, активность которых достаточно просто отследить по вегетационным индексам (с помощью спутников определяют площадь, занимаемую зеленой листвой), вечнозеленые леса не меняют внешнего вида, хотя и перестают интенсивно фотосинтезировать в холодное время года.
Существуют свидетельства, что наблюдающиеся в последние годы повышенные среднегодовые температуры ускорили прирост валовой первичной продукции (Gross Primary Production, GPP) — суммарного количества органического вещества — многих вечнозеленых экосистем высоких широт. Вместе с тем потепление может негативно сказываться на количестве доступной растениям воды, тем самым ограничивая возможность усвоения углерода, стимулируя клеточное дыхание и приводя к итоговому выходу углерода в атмосферу.
Ученые разрабатывают методы слежения за динамикой биомассы лесных экосистем, которые базируются на наземных и космических измерениях локальных концентраций углекислого газа. Однако разделение суммарных потоков на компоненты, такие как рост GPP (захват CO2 из атмосферы) и клеточное дыхание (выделение CO2), оказывается сложной задачей, особенно для вечнозеленых лесов, для которых характерны значительные колебания эффективности усваивания света при сохранении структуры полога и занимаемой листьями или иголками площади.
Дополнительными затруднениями являются часто наблюдаемая на высоких широтах плотная облачность и отбрасываемые облаками тени, наличие снега и открытых водных поверхностей, которые значительно осложняют обработку спутниковых данных. Также вечнозеленые леса часто произрастают на сложных ландшафтах с возвышенностями, что делает малопригодным метод микровихревых пульсаций (eddy covariance) — один из основных способов определения потоков в атмосфере. В результате сезонные колебания прироста GPP в случае вечнозеленых лесов определяются с плохой точностью, что остается одной из важнейших неизвестных в моделях наземной биосферы.
Трой Магни (Troy Magney) из Калифорнийского технологического института и его коллеги впервые смогли зафиксировать сезонные изменения GPP вечнозеленого леса. Для этого авторы наблюдали вызываемую Солнцем флуоресценцию хлорофилла (Solar-Induced Fluorescence, SIF) — связанный с фотосинтезом процесс излучения низкоэнергетического фотона при переходе хлорофилла в основное состояние после возбуждения солнечным излучением.
Ученые исследовали SIF при помощи спектрометра, установленного на 26-метровой башне посреди хвойного леса в Колорадо, США. В результате авторам впервые удалось связать это свечение с физиологией иголок, активностью фотосинтеза и получаемыми со спутника данными. Оказалось, что колебания интенсивностью SIF на масштабе дней и месяцев хорошо коррелируют с приростом GPP. Весной в иголках деревьев активируется хлорофилл, что провоцирует как фотосинтез, так и флуоресценцию, так как растения используют защитные пигменты, которые производятся в ксантофилловом цикле и оберегают клетки от негативного действия солнечного света во время зимы.
«Мы пытаемся разработать методы слежения за фотосинтезом на больших масштабах, что позволит определять количество усваиваемого биосферой CO2, — говорит Магни. — В конечном счете, измерение слабого флуоресцентного свечения растений обеспечит точное определение величины и времени поглощения углерода наземной биосферой. Это поможет нам понять, как леса реагируют на изменением климата, и предположить, как они сами поменяются в будущем».
Недавно ученые нашли самые высокогорные сосудистые растения (внутри них движутся вода и питательные вещества) и узнали, как синхронизированные циклы деревьев подавляют биологическое разнообразие. Также мы подробно писали, что лесам северного полушария уделяется непропорционально мало внимания со стороны международных организаций и чем это грозит.
Бактерии научились инактививровать антибактериальную ДНК-гиразу
Немецкие ученые выяснили, что супербактерии, сохранявшие чувствительность к экспериментальному антибиотику альбицидину, защитились от него с помощью амплификации гена STM3175. Этот ген отвечает за регуляцию транскрипции малых молекул с доменом связывания, подобным ингибитору ДНК-гиразы — основы антибиотика альбицидина. Такое увеличение копии гена приводит к тысячекратному повышению уровня резистентности к препарату. Исследование опубликовано в PLoS Biology. В 2019 году почти пять миллионов человек погибло из-за бактерий, устойчивых к большинству известных антибиотиков, — супербактерий. По оценкам ученых к 2050 году это число увеличится в два раза. Основной причиной развития резистентности к противомикробным препаратам признано нерациональное их использование в медицине, ветеринарии и зоотехнии в сочетании с недостаточным пониманием механизмов бактериальной резистентности. Однако влияют и другие факторы: например, загрязнение атмосферы. Ученые постоянно ищут новые молекулы, которые были бы активны против супербактерий. Таким многообещающим соединением стал альбицидин — фитотоксичная молекула, вырабатываемая бактерией Xanthomonas albilineans, в исследованиях была эффективна против целого ряда супербактерий. Альбицидин ингибирует активность бактериальной ДНК-гиразы (топоизомеразы II) и эффективно действует на ковалентный комплекс ДНК и гиразы в крайне низких концентрациях. В нескольких исследованиях уже сообщалось о развитии резистентности к этой молекуле у некоторых бактерий, однако ее механизмы оставались не до конца выясненными. Команда ученых под руководством Маркуса Фульда (Marcus Fulde) из Свободного университета Берлина изучала механизмы резистентности к альбицидину, которая развилась у Salmonella typhimurium и Escherichia coli. Для этого они подвергали бактерии воздействию высоких концентраций более стабильного аналога антибиотика и наблюдали за ростом колоний в течение 24 часов. Из 90 протестированных клонов 14 показали рост в этих условиях. Секвенирование генома этих штаммов показало, что большинство (девять штаммов) несет мутации в гене tsx, ответственном за экспрессию нуклеозидспецифичного порина, что в 16 раз увеличивало минимальную ингибирующую концентрацию (MIC) антибиотика. Один из оставшихся пяти резистентных штаммов с интактным геном tsx демонстрировал более чем стократное повышение MIC, и анализ данных секвенирования его ДНК выявил амплификацию гена, приводящую к образованию 3-4 копий геномной области без однонуклеотидных полиморфизмов. При дополнительном анализе этого штамма ученые выяснили, что перекрывающаяся амплифицированная область содержит ген STM3175, который транскрибируется полицистронно в структуре оперона и N-концевой части qseB. Более тщательное изучение аминокислотной последовательности показало, что STM3175 состоит из 2 доменов: N-концевого AraC-подобного ДНК-связывающего домена и C-концевого GyrI-подобного лиганд-связывающего домена. Ученые обнаружили, что такая структура позволяет STM3175 связывать альбицидин с высокой аффинностью и инактивировать его. У разных бактерий обнаружились гомологи этого гена с теми же функциями, при этом на эффект других антибактериальных препаратов они не влияли. Знание нового механизма развития устойчивости к альбицидину позволит ученым разрабатывать новые способы модификации молекулы, чтобы обойти этот механизм. Ранее ученые обнаружили антибактериальную молекулу с широким спектром действия, которая не вызвала резистентности у микроорганизмов.