Загрузка галереи
Ученые использовали слабую флуоресценцию фотосинтезирующего пигмента растений хлорофилла для определения прироста массы хвойного леса, который трудно определить другими методами. Полученные результаты впервые позволили связать увеличение количества органического вещества вечнозеленой экосистемы с экспериментально определяемым свечением на масштабе сезона. Эти данные позволят определить реакцию лесов на изменение климата, пишут авторы в журнале Proceedings of the National Academy of Sciences.
Вечнозеленые леса северного полушария Земли содержат существенную долю всего органического углерода на планете, а также играют значительную роль в круговороте углерода в виде углекислого газа (CO2) между биосферой и атмосферой. В отличие от лиственных лесов, активность которых достаточно просто отследить по вегетационным индексам (с помощью спутников определяют площадь, занимаемую зеленой листвой), вечнозеленые леса не меняют внешнего вида, хотя и перестают интенсивно фотосинтезировать в холодное время года.
Существуют свидетельства, что наблюдающиеся в последние годы повышенные среднегодовые температуры ускорили прирост валовой первичной продукции (Gross Primary Production, GPP) — суммарного количества органического вещества — многих вечнозеленых экосистем высоких широт. Вместе с тем потепление может негативно сказываться на количестве доступной растениям воды, тем самым ограничивая возможность усвоения углерода, стимулируя клеточное дыхание и приводя к итоговому выходу углерода в атмосферу.
Ученые разрабатывают методы слежения за динамикой биомассы лесных экосистем, которые базируются на наземных и космических измерениях локальных концентраций углекислого газа. Однако разделение суммарных потоков на компоненты, такие как рост GPP (захват CO2 из атмосферы) и клеточное дыхание (выделение CO2), оказывается сложной задачей, особенно для вечнозеленых лесов, для которых характерны значительные колебания эффективности усваивания света при сохранении структуры полога и занимаемой листьями или иголками площади.
Дополнительными затруднениями являются часто наблюдаемая на высоких широтах плотная облачность и отбрасываемые облаками тени, наличие снега и открытых водных поверхностей, которые значительно осложняют обработку спутниковых данных. Также вечнозеленые леса часто произрастают на сложных ландшафтах с возвышенностями, что делает малопригодным метод микровихревых пульсаций (eddy covariance) — один из основных способов определения потоков в атмосфере. В результате сезонные колебания прироста GPP в случае вечнозеленых лесов определяются с плохой точностью, что остается одной из важнейших неизвестных в моделях наземной биосферы.
Трой Магни (Troy Magney) из Калифорнийского технологического института и его коллеги впервые смогли зафиксировать сезонные изменения GPP вечнозеленого леса. Для этого авторы наблюдали вызываемую Солнцем флуоресценцию хлорофилла (Solar-Induced Fluorescence, SIF) — связанный с фотосинтезом процесс излучения низкоэнергетического фотона при переходе хлорофилла в основное состояние после возбуждения солнечным излучением.
Ученые исследовали SIF при помощи спектрометра, установленного на 26-метровой башне посреди хвойного леса в Колорадо, США. В результате авторам впервые удалось связать это свечение с физиологией иголок, активностью фотосинтеза и получаемыми со спутника данными. Оказалось, что колебания интенсивностью SIF на масштабе дней и месяцев хорошо коррелируют с приростом GPP. Весной в иголках деревьев активируется хлорофилл, что провоцирует как фотосинтез, так и флуоресценцию, так как растения используют защитные пигменты, которые производятся в ксантофилловом цикле и оберегают клетки от негативного действия солнечного света во время зимы.
Загрузка галереи
«Мы пытаемся разработать методы слежения за фотосинтезом на больших масштабах, что позволит определять количество усваиваемого биосферой CO2, — говорит Магни. — В конечном счете, измерение слабого флуоресцентного свечения растений обеспечит точное определение величины и времени поглощения углерода наземной биосферой. Это поможет нам понять, как леса реагируют на изменением климата, и предположить, как они сами поменяются в будущем».
Недавно ученые нашли самые высокогорные сосудистые растения (внутри них движутся вода и питательные вещества) и узнали, как синхронизированные циклы деревьев подавляют биологическое разнообразие. Также мы подробно писали, что лесам северного полушария уделяется непропорционально мало внимания со стороны международных организаций и чем это грозит.
Бактерии научились инактививровать антибактериальную ДНК-гиразу
Немецкие ученые выяснили, что супербактерии, сохранявшие чувствительность к экспериментальному антибиотику альбицидину, защитились от него с помощью амплификации гена STM3175. Этот ген отвечает за регуляцию транскрипции малых молекул с доменом связывания, подобным ингибитору ДНК-гиразы — основы антибиотика альбицидина. Такое увеличение копии гена приводит к тысячекратному повышению уровня резистентности к препарату. Исследование опубликовано в PLoS Biology. В 2019 году почти пять миллионов человек погибло из-за бактерий, устойчивых к большинству известных антибиотиков, — супербактерий. По оценкам ученых к 2050 году это число увеличится в два раза. Основной причиной развития резистентности к противомикробным препаратам признано нерациональное их использование в медицине, ветеринарии и зоотехнии в сочетании с недостаточным пониманием механизмов бактериальной резистентности. Однако влияют и другие факторы: например, загрязнение атмосферы. Ученые постоянно ищут новые молекулы, которые были бы активны против супербактерий. Таким многообещающим соединением стал альбицидин — фитотоксичная молекула, вырабатываемая бактерией Xanthomonas albilineans, в исследованиях была эффективна против целого ряда супербактерий. Альбицидин ингибирует активность бактериальной ДНК-гиразы (топоизомеразы II) и эффективно действует на ковалентный комплекс ДНК и гиразы в крайне низких концентрациях. В нескольких исследованиях уже сообщалось о развитии резистентности к этой молекуле у некоторых бактерий, однако ее механизмы оставались не до конца выясненными. Команда ученых под руководством Маркуса Фульда (Marcus Fulde) из Свободного университета Берлина изучала механизмы резистентности к альбицидину, которая развилась у Salmonella typhimurium и Escherichia coli. Для этого они подвергали бактерии воздействию высоких концентраций более стабильного аналога антибиотика и наблюдали за ростом колоний в течение 24 часов. Из 90 протестированных клонов 14 показали рост в этих условиях. Секвенирование генома этих штаммов показало, что большинство (девять штаммов) несет мутации в гене tsx, ответственном за экспрессию нуклеозидспецифичного порина, что в 16 раз увеличивало минимальную ингибирующую концентрацию (MIC) антибиотика. Один из оставшихся пяти резистентных штаммов с интактным геном tsx демонстрировал более чем стократное повышение MIC, и анализ данных секвенирования его ДНК выявил амплификацию гена, приводящую к образованию 3-4 копий геномной области без однонуклеотидных полиморфизмов. При дополнительном анализе этого штамма ученые выяснили, что перекрывающаяся амплифицированная область содержит ген STM3175, который транскрибируется полицистронно в структуре оперона и N-концевой части qseB. Более тщательное изучение аминокислотной последовательности показало, что STM3175 состоит из 2 доменов: N-концевого AraC-подобного ДНК-связывающего домена и C-концевого GyrI-подобного лиганд-связывающего домена. Ученые обнаружили, что такая структура позволяет STM3175 связывать альбицидин с высокой аффинностью и инактивировать его. У разных бактерий обнаружились гомологи этого гена с теми же функциями, при этом на эффект других антибактериальных препаратов они не влияли. Знание нового механизма развития устойчивости к альбицидину позволит ученым разрабатывать новые способы модификации молекулы, чтобы обойти этот механизм. Ранее ученые обнаружили антибактериальную молекулу с широким спектром действия, которая не вызвала резистентности у микроорганизмов.