Незадолго до рождения Солнечной системы по соседству с ней — на расстоянии всего в тысячу световых лет — произошла космическая катастрофа: слияние нейтронных звезд. Как полагают авторы статьи, опубликованной в журнале Nature, только этот сценарий может объяснить соотношение изотопов урана и других тяжелых элементов в метеоритах. Эти элементы могли сформироваться только в результате так называемого r-процесса, который идет именно в процессе слияния нейтронных звезд.
Первичный нуклеосинтез после Большого взрыва породил только ядра водорода и гелия. Литий, бериллий и бор возникли при бомбардировке атомов межзвездной среды частицами высоких энергий, а все более тяжелые элементы родились либо в ходе реакций ядерного синтеза в недрах звезд, либо в результате вспышек сверхновых. Однако детальный анализ процессов, идущих про взрывах сверхновых, показал, что их «производительность» недостаточна, чтобы породить наблюдаемое количество атомов тяжелых элементов — во Вселенной их значительно больше. В конце 1980-х годов ученые выдвинули предположение, что за производство ряда тяжелых элементов, например, рубидия, йода, золота и некоторых других, могут отвечать слияния нейтронных звезд. Только в этом случае становится возможной реакция синтеза тяжелых элементов путем быстрого захвата нейтронов — r-процесс.
Дело в том, что изотопы многих тяжелых элементов могут становиться устойчивыми только в том случае, если в них есть достаточно много нейтронов. Ядра могут синтезироваться в звездах путем медленного захвата нейтронов, s-процесса, но они быстро распадаются, потому что не успевают набрать нужное количество нейтронов. Именно поэтому физики, занимающиеся синтезом сверхтяжелых ядер, до сих пор не могут добраться до центра «острова стабильности» — в их распоряжении нет достаточно богатых нейтронами ядер-снарядов. Однако слияние нейтронных звезд позволяет запустить «быстрый процесс»: непосредственно перед слиянием приливные силы разрывают звезды и порождают такой мощный поток нейтронов, что тяжелые ядра насыщаются нейтронами, перескакивают зону нестабильности и превращаются в стабильные изотопы. Именно так, по современным представлениям, во Вселенной появилось золото, платина, йод, ксенон, уран, плутоний, торий и некоторые другие элементы.
Имре Бартоc (Imre Bartos) из университета Флориды и Сабольч Марка (Szabolcs Marka) из Колумбийского университета решили проанализировать соотношение изотопов тяжелых элементов в ранней Солнечной системе и проверить, может ли они указывать на следы r-процесса от слияния нейтронных звезд в нашем районе Галактики.
Исследователи опирались на данные, которые были получены в результате изучения кальций-алюминиевых включений. Это светлые зерна размером от долей миллиметра до сантиметра, которые находят в метеоритах, относящихся к классу углистых хондритов. Считаются, что эти зерна могут быть самым древним веществом в Солнечной системе. Возраст одного из таких включений, найденного в метеорите, упавшем на северо-западе Африки, оценивается в 4,57 миллиарда лет. В 2016 году ученые обнаружили, что соотношение изотопов урана-238 и урана-235 в этих включениях не может быть объяснено иначе, чем присутствием кюрия-247, который возникает именно в результате r-процесса. Поскольку его период полураспада составляет 15,5 миллиона лет, он уже распался, оставив после себя уран-235. На r-процесс указывало также присутствие в метеоритах долгоживущего плутония-244.
Марка и Бартос с помощью математического моделирования проиграли разные сценарии появления «быстрых элементов» в газопылевом облаке, из которого возникла Солнечная система, опираясь на метеоритные данные. Они учли при этом, в частности, статистику о количестве взрывов сверхновых в этой части Галактики (при которых могут в небольших количествах синтезироваться продукты r-процесса), скорость переноса вещества в межзвездном пространстве, наблюдаемое соотношение изотопов тяжелых элементов в метеоритах и ряд других показателей.
Моделирование показало, что взрывы сверхновых, хотя и происходят часто, не могли обеспечить нужное количество тяжелых элементов. В то же время слияние нейтронных звезд — событие достаточно редкое, чтобы до Солнечной системы могло дойти в достаточном количестве вещество от такого слияния в другой области Галактики.
Исходя из этого, исследователи делают вывод, что поставщиком тяжелых элементов для Солнечной системы могло быть единичное слияние нейтронных звезд на расстоянии около 300 парсеков (около 1000 световых лет). Они полагают, что слияние могло произойти примерно за 80 миллионов лет до формирования нашей планетной системы, и только оно могло обеспечить достаточное количество кюрия и плутония, следы которых мы видим в метеоритах.
Более подробно о первом в истории зарегистрированном слиянии нейтронных звезд вы можете прочесть в нашем материале «Рождение золота», об r-процессе — в блоге «Откуда берутся тяжелые металлы», а о совсем недавнем слиянии нейтронных звезд — в нашей новости.
Сергей Кузнецов
Его ширина составляет 322 километра
Астрономы оценили альбедо и форму кандидата в карликовую планету 2002 MS4 из Пояса Койпера, а также нашли на нем впадину глубиной 45,1 километра и протяженностью 322 километра — предположительно, это огромный кратер. Это удалось сделать благодаря наблюдениям покрытий объектом звезд Млечного Пути. Препринт работы опубликован на сайте arXiv.org. Покрытия звезд возникают, когда какое-либо близкое к земному наблюдателю тело, такое как астероид, планета или ее спутник, проходят на фоне звезды Млечного Пути, вызывая падение ее яркости или закрывая ее полностью. Это позволяет уточнить размеры и форму тела, его орбиту или выявить наличие колец или других структур. В частности, благодаря покрытиям звезд были открыты кольца у Урана и карликовой планеты Квавар из Пояса Койпера, а также установлена двойственность Аррокота — цели зонда New Horizons. Группа астрономов во главе с Флавией Роммель (Flavia Rommel) из Федерального технологического университета в Бразилии опубликовала результаты программы по наблюдению девяти покрытий звезд кандидатом в карликовую планету в Поясе Койпера (307261) 2002 MS4, проводившейся в период с 2019 по 2022 год при помощи ряда наземных телескопов в Южной и Северной Америке, Африке, Европе и Западной Азии. Объект был обнаружен в рамках программы отслеживания околоземных астероидов в июня 2002 года и классифицируется как представитель горячей популяции классических тел Пояса Койпера. Модель 2002 MS4, лучше всего подходящая под данные наблюдений, обладает большой полуосью 412 километров и малой полуосью 385 километров, а также оценочным геометрическим альбедо 0,1. Исследователи также обнаружили три отчетливых детали рельефа, видимых в северо-восточной части лимба: впадина, глубиной 11 километров, за которой следует возвышенность высотой 25 километров, за которой следует еще одна впадина с глубиной 45,1 километра и линейной протяженностью 322 километра. Предполагается, что если вторая впадина является ударным кратером, то это может быть самый большой кратер на транснептуновых объектах. Однако не исключена полностью модель, где возвышенность объясняется наличием спутника, хотя из данных наблюдений явно не следует присутствие у 2002 MS4 выбросов с поверхности, спутников или колец. Ранее мы рассказывали о том, как самый крупный кратер Аррокота рассказал о его ударном прошлом.