Австрийская компания Frequentis и американская Sunhillo объявили о разработке конвертера полетных данных UAS-C, с помощью которого можно будет безопасно интегрировать дроны с общее воздушное пространство. Как пишет Aviation Week, устройство, поддерживающее несколько протоколов передачи данных, предназначено в первую очередь для дронов, выполняющих полеты за пределами прямой видимости оператора.
В настоящее время в большинстве стран мира полеты дронов за пределами прямой видимости оператора запрещены. В некоторых государствах такие полеты возможны, но они проходят со множеством ограничений по высоте, скорости, времени и маршруту полета. Несколько компаний сегодня занимаются разработкой различных типов систем, которые бы позволили безопасно интегрировать беспилотники в общее с гражданской авиацией воздушное пространство.
Обычно проекты интеграции дронов предусматривают создание специализированной автоматизированной диспетчерской системы для беспилотных летательных аппаратов, которая бы управляла их полетами и обменивалась данными с авиационными диспетчерскими пунктами.
Проект конвертера данных UAS-C предполагает прямую передачу полетных данных дронов авиационным диспетчерским пунктами. Устройство подключается к пульту управления дроном и преобразует получаемые от аппарата данные о направлении, скорости и высоте полета в данные в один из авиационных стандартов, например, ASTERIX. После преобразования информация с дронов может быть использована для визуализации наравне с данными с самолетов и вертолетов. Конвертер UAS-C способен передавать параметры полета дрона как через сотовую сеть LTE, так и по проводной сети через туннель VPN.
В середине января 2019 года российское научно-производственное предприятие «Цифровые радиотехнические системы» провело испытания миниатюрного ответчика системы автоматического зависимого наблюдения-вещания «Колибри» для малых беспилотников. Такая система позволяет интегрировать дроны в общее с пилотируемой авиацией воздушное пространство. Во время испытаний беспилотник VTOL-20 с вертикальными взлетом и посадкой, разработанный компанией «Кроштадт-Аэро», выполнял полеты на высоте 50 метров по сложной траектории.
Полет беспилотника разработчики отслеживали с помощью многопозиционной системы наблюдения «Альманах», разработанной специально для диспетчеризации полетов. Эта система способна принимать данные с самолетных радиолокационных ответчиков и систем АЗН-В на самолетах, беспилотниках и наземной технике.
Василий Сычёв
Его система управления автоматически находит оптимальные точки в воздушных потоках
Инженеры разработали алгоритм управления для беспилотников самолетного типа, который позволяет парить на восходящих воздушных потоках, расходуя в 150 раз меньше энергии, чем при активном полете с работающим двигателем. Алгоритм отслеживает и подстраивается под непрерывно изменяющиеся воздушные потоки, сохраняя высоту. Препринт доступен на arXiv.org. При поддержке Angie — первого российского веб-сервера Беспилотники самолетного типа более энергоэффективны, чем мультикоптеры. Благодаря крыльям они способны преодолевать большие дистанции и могут гораздо дольше находиться в воздухе. Причем эти параметры могут быть увеличены за счет парения — планирующего полета, в котором аппарат использует восходящие воздушные потоки для удержания в воздухе без использования тяги двигателей, аналогично тому, как это делают некоторые птицы. Группа инженеров под руководством Гвидо де Круна (Guido de Croon) из Делфтского технического университета разработала систему управления, которая позволяет беспилотникам самолетного типа без какой-либо предварительной информации о поле ветра самостоятельно находить оптимальные точки в восходящих воздушных потоках и использовать их для длительного парения с минимальным расходом энергии. В системе управления вместо обычного ПИД-регулятора используется метод инкрементальной нелинейной динамической инверсии, контролирующий угловое ускорение, подстраивая его под желаемые значения. Система управления может без изменения настроек работать и в режиме парения, и при полете с включенным двигателем во время поиска новых оптимальных точек в воздушных потоках или для компенсации резких порывов ветра. Для поиска оптимальных точек в поле ветра, в которых скорость снижения полностью компенсируется восходящим потоком воздуха, применяется алгоритм имитации отжига. Он случайно выбирает направления в пространстве пытаясь найти такую точку, в которой беспилотник может устойчиво лететь с минимально возможной тягой двигателя. Для тестов инженеры построили 3D-печатный прототип на основе модели радиоуправляемого самолета Eclipson model C. Он имеет размах крыла 1100 миллиметров и массу 716 грамм вместе с аккумуляторной батареей. В качестве полетного контроллера применяется Pixhawk 4. Помимо установленного под крылом и откалиброванного в аэродинамической трубе сенсора скорости, беспилотник имеет GPS-модуль для отслеживания положения во время полетов на открытом воздухе. В помещении применяется оптическая система Optitrack. Испытания проводились в аэродинамической трубе, возле которой установили наклонную рампу, для создания восходящего воздушного потока. Прототип запускали в воздушном потоке сначала на ручном управлении, после чего включали автопилот. Разработчики провели эксперименты двух типов. В первом они постепенно изменяли скорость воздушного потока от 8,5 до 9,8 метров в секунду при фиксированном угле наклона рампы. Во втором эксперименте скорость воздушного потока оставалась неизменной, зато менялся угол установки подиума. В обоих случаях алгоритм системы управления быстро находил в поле ветра точки, в которых мог поддерживать планирующий полет в течение более чем 25 минут, лишь изредка задействуя тягу двигателя в среднем лишь на 0,25 процента от максимальной, хотя при таких значениях воздушного потока для поддержания обычного полета требуется около 38 процентов. При изменении поля ветра из-за изменившегося угла наклона рампы или скорости воздушного потока алгоритм успешно находил и удерживал новое положение равновесия. В будущем инженеры планируют провести испытания на открытом воздухе. https://www.youtube.com/watch?v=b_YLoinHepo Американские инженеры и планетологи предложили использовать планер, способный длительное время держаться в воздухе за счет восходящих потоков и термиков, для изучения каньонов Марса. Предполагается, что такие аппараты с надувными разворачиваемыми крыльями могут стартовать с аэростата или дирижабля и затем планировать в атмосфере Марса от 20 минут до суток.