Астрофизики, используя данные орбитального гамма-телескопа Ферми, проанализировали внегалактический фоновый свет и выявили пик формирования звезд при красном смещении z ~ 2. Это согласно стандартной космологической модели соответствует моменту в прошлом Вселенной около 10 миллиардов лет назад. Проведенный анализ оценивает скорость образования звезд и дает ориентир для будущих миссий, которые будут исследовать все еще темные периоды ранних дней звездной эволюции. Исследование опубликовано в Science.
Звезды создают большую часть света, который мы видим, и синтезируют большинство тяжелых элементов, таких как кремний и железо. Однако несмотря на огромное количество звезд и галактик во Вселенной мы видим лишь тот свет, что исходит от Солнца и нашей галактики, весь остальной чрезвычайно тусклый. Поэтому ночью небо темное, а кроме лунного света, видны лишь звезды и слабое свечение Млечного Пути. Этот эффект называется парадокс Ольберса.
Свет, излучаемый всеми галактиками за всю историю Вселенной, производит так называемый внегалактический фоновый свет (ВФС) на ультрафиолетовых, видимых и инфракрасных длинах волн. Он продолжает лететь по космосу еще долго даже после того, как его источники сгорели, и представляет собой своеобразный космический туман, который мешает ученым наблюдать первоисточники света. Но через него способны проникать гамма-лучи, будучи самой высокоэнергетической формой света. Пролетая через внегалактический фоновый свет, они вступают во взаимодействия с частицами света на всех длинах волн, оставляя «отпечаток» в своем спектре. Столкновение между высокоэнергетическим гамма-лучом и инфракрасным светом, например, превращает энергию в пару частиц, электрон и его аналог антиматерии, позитрон. Тот же процесс происходит, когда гамма-лучи средней энергии взаимодействуют с видимым светом, а гамма-лучи низкой энергии взаимодействуют с ультрафиолетовым светом. С помощью орбитального гамма-телескопа Ферми, который в этом году отметил свое десятилетие, ученые могут обнаруживать эти следы затухания гамма-излучения и заглядывать, таким образом, в глубины Вселенной.
Астрофизики из университета Клемсона проанализировали гамма-сигналы от 739 блазаров (галактик с массивными черными дырами в своих центрах с релятивистскими джетами, направленными в сторону наблюдателя), собранные телескопом Ферми в течение девяти лет. Их исследование в пять раз увеличило количество блазаров, анализированных Ферми ранее и помогло построить модель внегалактического фонового света, начиная с момента, когда возраст Вселенной составлял 10% от сегодняшнего. Ученые выявили, что пик звездообразования происходил примерно 10 миллиардов лет назад. Однако следует оговориться, что ученые не могу измерить расстояние напрямую, так как Вселенная расширилась, пока излучение шло до нас. Они определяли его, анализируя красное смещение ВФС. Прочитать о том, в каких единицах и как астрономы измеряют космические расстояние можно здесь и здесь.
Новое исследование стало важным подтверждением предыдущих измерений скорости звездообразования, полученных с помощью миссий, таких как телескоп Хаббл, которые анализируют отдельные источники света в ультрафиолетовом, видимом и инфракрасном диапазонах. Однако подобные исследования не способны уловить более тусклые звезды и галактики и не могут объяснить звездообразование, которое происходило в межгалактическом пространстве. Анализ внегалактического фонового света включает излучение из всех источников и позволяет избежать таких проблем. А подтверждение результатов предыдущих исследований показывает, что анализ внегалактического фонового света должным образом учитывает красные смещения далеких галактик.
Понимание звездообразования имеет значение для других областей астрономических исследований, включая исследования космической пыли, эволюции галактик и темной материи. Анализ команды предоставит будущим миссиям руководство для изучения самых ранних дней звездной эволюции. Одной из таких миссий станет космический телескоп «Джеймс Уэбб», который будет запущен в 2021 году и позволит ученым изучать формирование изначальных галактик. Одна из главных его целей — разгадать, что произошло в первый миллиард лет. Возможно, однажды ученые даже найдут способ вернуться к Большому Взрыву.
Ранее астрономам уже удавалось найти самые ранние звезды во Вселенной. Тогда ученые смогли рассмотреть галактики, сформировавшиеся в эпоху реионизации, спустя всего 800 миллионов лет после Большого Взрыва. Кроме того, ученые изучили образование звезд в пылевой галактике возрастом 12.8 миллиарда лет назад.
Тимофей Кочкар
В теории их быть не должно
Астрономы обнаружили сразу две крупные экзопланеты у очень маломассивного красного карлика. Такое открытие не вписывается в стандартные теории формирования планет, которые предсказывают отсутствие таких экзогигантов. Препринт работы опубликован на сайте arXiv.org. Считается, что маломассивные звезды очень редко формируют вокруг себя крупные планеты, а в случае очень легких красных карликов, с массами менее 0,2-0,4 массы Солнца, процесс образования гиганта в протопланетном диске, согласно стандартной модели аккреции вещества на твердое ядро, идти не должен. Однако на сегодняшний день уже известна малочисленная, но существующая в реальности популяция экзогигантов вокруг звезд с малой массой, которая начала формироваться 25 лет назад, когда была открыта экзопланета GJ 876b. Поиск таких тел важен для уточнения теоретических моделей и обоснования исключений из них. Группа астрономов во главе с Хосе-Мануэлем Альменарой (Jose-Manuel Almenara) из Университета Гренобль-Альпы сообщила об открытии сразу двух крупных экзопланет на орбитах вокруг маломассивной звезды. Речь идет о красном карлике TOI 4860, наблюдения за которым велись при помощи транзитного метода космическим телескопом TESS и наземным телескопом ExTrA, а также метода радиальных скоростей при помощи спектрографов SPIRou и ESPRESSO, установленных на наземных телескопах. TOI 4860 относится к спектральному классу M3.5V, обладает массой 0,34 массы Солнца и радиусом 0,354 радиуса Солнца и находится на удалении 262,2 светового года от Солнца. Звезда характеризуется повышенной металличностью, демонстрирует низкий уровень активности, а ее возраст оценивается примерно в четыре миллиарда лет. Существование TOI-4860b было подтверждено, эта транзитная экзопланета обладает массой 0,273 массы Юпитера и радиусом 0,766 радиуса Юпитера, и, скорее всего, похожа на Сатурн. Она находится на близкой к круговой орбите с периодом 1,52 дня и средним расстоянием до звезды в 0,0181 астрономической единицы, а ее эффективная температура составляет 694 кельвина. Судя по близости к звезде, форма планеты должна искажаться приливными силами, а орбита будет уменьшаться со временем. Экзогигант представляется интересной целью для дальнейших наблюдений, в том числе спектроскопических исследований атмосферы. TOI-4860с пока что остается кандидатом в экзопланету. Ее орбита характеризуется вытянутостью (эксцентриситет 0,657), длиной большой полуоси 0,776 астрономической единицы и периодом 426,9 дня, при этом сама экзопланета не транзитная и обладает минимальной массой 1,66 массы Юпитера. Ранее мы рассказывали о том, как ученые нашли аномально долгопериодического экзогиганта у близкой к Солнцу звезды.