Шведская изобретательница и журналист Симона Йетч (Simone Giertz) представила The Every Day Calendar — настенный календарь со светодиодами, который предназначен для отслеживания выполнения определенных задач. Йетч запустила компанию по сбору средств на краудфандинговой платформе Kickstarter и собрала необходимые 35 тысяч долларов за несколько минут после открытия проекта.
Симона Йетч приобрела известность как журналист, блогер и «королева дерьмовых роботов»: уже несколько лет она ведет YouTube-канал, на котором показывает своих смешных и не очень полезных роботов. Например, она попыталась научить программируемый манипулятор uArm готовить завтрак: робот, однако, оказался неприспособлен к задаче из-за ограниченного количества степеней свободы (впрочем, он научился поднимать ложку). Затем Йетч попыталась научить uArm делать макияж (тоже не очень успешно) и научила его надевать очки на голову человека.
Ее новый проект The Every Day Calendar, в отличие от знаменитых неэффективных роботов, предназначен для продажи и представляет собой интерактивный дисплей из 365 небольших печатных плат. За каждой из них находится светодиод, который загорается при нажатии на плату. Каждая такая «кнопка» обозначает один день в году (дисплей разбит на дни и месяца), поэтому главная цель гаджета — помочь пользователю отслеживать ежедневное выполнение каких-либо действий. Сама Йетч, к примеру, использовала свой календарь для ежедневной медитации в течение года.
Йетч запросила на создание календаря 35 тысяч долларов, но уже за час собрала в два раза больше денег. Краудфандинг официально закончится 22 ноября: на сегодняшний день сумма собранных средств превысила 260 тысяч долларов. Судя по опции Early Bird для самых первых поддержавших календарь обойдется в 250 долларов. Поставки готовых гаджетов Йетч планирует начать в декабре 2019 года.
The Every Day Calendar — первый крупный проект Йетч после операции по удалению доброкачественной опухоли головного мозга, которую она перенесла весной. О лечении она подробно рассказала на своем канале.
Елизавета Ивтушок
Термопокрывало охладит электромобиль днем и согреет ночью
Китайские инженеры создали терморегулирующий материал и термопокрывало на его основе, которое защищает электромобиль от жары и холода без дополнительных затрат энергии. Термопокрывало состоит из двух частей, одна из которых представляет собой ткань на основе диоксида кремния и нитрида бора, а вторая на основе фольги из алюминиевого сплава. Использование материала в качестве автомобильного чехла позволило в жаркую погоду сохранять температуру в салоне почти на 28 градусов ниже, чем в салоне автомобиля без чехла, а ночью поддерживать температуру батарейного блока электромобиля почти на 7 градусов выше температуры снаружи. Статья опубликована в журнале Device. Поддержание определенной температуры необходимо не только для комфортного самочувствия человека, но и для нормальной работы многих технических устройств. Например, в холодную погоду литий-ионные аккумуляторы теряют емкость, а летом в жару перегреваются, что может привести к сокращению их срока службы или даже возгоранию. Чтобы удерживать температуру в нужном диапазоне, требуется дополнительная энергия на нагрев или охлаждение, и на это может уходить довольно много энергии, особенно если речь идет о больших аккумуляторных батареях — как, например, в электромобилях. Однако существует способ регулировать температуру объекта пассивным образом, не затрачивая для этого дополнительную энергию. По такому пути пошли инженеры под руководством Кэ Хан Цуя (Kehang Cui) из Шанхайского университета транспорта. Они разработали материал, который за счет своих излучательных свойств позволяет регулировать радиационный нагрев и охлаждение, и изготовили из него термопокрывало, которое назвали «термальный плащ Януса». Название в честь двуликого бога из римской мифологии отражает двухстороннее строение материала. Внешняя его сторона играет роль солнцезащитного инфракрасного радиатора, а внутренняя — роль широкополосного инфракрасного отражателя. Внешняя часть материала изготовлена из тонких волокон на основе диоксида кремния, которые покрыты наночастицами нитрида бора с гексагональной кристаллической решеткой. Волокна материала переплетаются вместе и образуют ткань. С обратной стороны к ней прикрепляется внутренний слой, изготовленный из алюминиевого сплава. Внешняя и внутренняя стороны материала обладают различными оптическими свойствами: сторона с тканью имеет высокий коэффициент отражения солнечного света до 96 процентов, а также высокую излучательную способность до 97 процентов в инфракрасном диапазоне, совпадающем с атмосферным инфракрасным окном с длинами волн от 7 до 14 микрометров, в то время как фольга из алюминиевого сплава, расположенная с обратной стороны, обладает высокой отражательной способностью со значением около 93 процентов и не имеет потерь во всем инфракрасном диапазоне (5-16,7 мкм). Это позволяет плащу отражать большую часть падающего солнечного излучения и при этом остывать за счет излучения фотонов в инфракрасном диапазоне. В то же время с внутренней стороны происходит рециркуляция фотонов, излученных объектом — они отражаются от материала. Для оценки эффективности термального плаща исследователи провели испытания с использованием двух электрокаров, припаркованных на открытом воздухе в типичных погодных условиях в Шанхае. Один из автомобилей был укрыт термочехлом. В то время как температура салона незакрытого автомобиля достигала 51 градуса Цельсия в полдень, температура салона автомобиля, укрытого чехлом, была на 27,7 градуса ниже. И на 7,8 градуса ниже значения температуры на улице. Температура батарейного блока автомобиля без чехла соответствовала температуре окружающей среды, в то время как температура батареи электромобиля, укрытого материалом, была на 8 градусов ниже дневной температуры. В зимнюю ночь, когда уличная температура опускалась ниже нулевой отметки, термочехол помогал удерживать температуру батарейного блока на 6,8 градуса Цельсия выше, чем снаружи. Инженеры отмечают, что материал термопокрывала разработан таким, чтобы его можно было масштабировать в производстве. Для этого им пришлось пойти на некоторые компромиссы. Например, использование более тонких волокон кремния повысило бы солнечную отражательную способность, но они были бы менее прочными и не могли бы быть изготовлены с использованием промышленных технологий, уже существующих на рынке. Кроме того, используемые материалы, включая алюминий, кремний и нитрид бора, являются недорогими, что делает плащ легким, прочным и огнестойким. Он может использоваться не только для изготовления автомобильных чехлов, но и, например, в качестве материала для покрытия зданий и даже космических аппаратов. Ткани на основе материалов с разными излучательными свойствами могут использоваться и для создания одежды. Например, недавно мы рассказывали о бельгийских физиках, которые спроектировали ткань, одежда из которой может быть теплой или очень легкой в зависимости от того, какой стороной она надета. Это достигается за счет разницы между излучательными свойствами двух сторон ткани.