Химики с помощью компьютерного моделирования и экспериментов обнаружили, что уран способен образовывать кристаллические полигидриды, которые обладают высокотемпературной сверхпроводимостью при умеренных давлениях. Самая высокая температура перехода в сверхпроводящее состояние оказалась у гептагидрида урана UH7, которая в термодинамически устойчивом состоянии составила −219 градусов Цельсия, говорится в статье, опубликованной в Science Advances.
Известные сейчас материалы, сверхпроводящие при рекордно высоких температурах, — гидриды различных элементов с большим количеством атомов водорода. Официальный рекорд (−70 градусов Цельсия) принадлежит сероводороду состава H3S, наличие сверхпроводимости у которого сначала было предсказано теоретически, а потом было доказано и в экспериментах по уменьшению сопротивления и при измерении эффекта Мёссбауэра. Совсем недавно две группы исследователей обнаружили, что при еще более высокой температуре сверхпроводником может быть гидрид лантана состава LaH10. По словам ученых, сверхпроводящими свойствами он обладает вплоть до −13 градусов Цельсия.
Основная проблема этих соединений состоит в том, что необходимые кристаллические фазы могут быть получены только очень высоких давлениях. Так, для получения сверхпроводящей фазы гидрида серы необходимо давление в 155 гигапаскалей (то есть примерно в полтора миллиона атмосфер), а гидрид лантана LaH10 образуется при еще более высоких давлениях — от 1,7 до 2 миллионов атмосфер. Поэтому ученые продолжают искать похожие соединения, которые тоже обладают сверхпроводящими свойствами при достаточно высоких температурах, но требуют при этом более низких давлений.
Группа ученых из России, Китая, США и Германии под руководством Артема Оганова (Artem Oganov) из ВНИИ автоматики имени Духова, МФТИ и Сколтеха проверила на сверхпроводящие свойства семейство гидридов еще одного элемента — урана.
Единственное устойчивое соединение, которое уран образует с водородом при атмосферном давлении, — это тригидрид состава UH3. Также было известно, что при комнатной температуре возможно образование отдельных молекул гидридов урана и другого состава, а вот систематического изучения кристаллических структур, которые уран может образовывать с водородом при других давлениях, ранее не проводилось.
Чтобы подробно исследовать, какие соединения уран с водородом образуют при различных давлениях (от атмосферного до 5 миллионов атмосфер), ученые сначала провели компьютерное моделирование с помощью алгоритма прогнозирования кристаллической структуры USPEX. Этот алгоритм основан на сочетании метода теории функционала плотности в рамках обобщенного градиентного приближения (generalized gradient approximation) и метода проекторно-присоединенных плоских волн. Оказалось, что в зависимости от условий в системе урана и водорода возможно образование 13 различных гидридов. При этом у пяти из них: UH7 , UH8, UH9, U2H13 и U2H17 — были обнаружены сверхпроводящие свойства. Атомы урана в этих соединениях располагаются по узлам гранецентрированной кубической или гексагональной плотноупакованной решеток, а водород формирует кубические кластеры H8, которые находятся между атомами урана.
Оказалось, что самой высокой температурой перехода в сверхпроводящее состояние обладает гептагидрид урана UH7. Этот гидрид термодинамически устойчив при давлении в 220 тысяч атмосфер, и сверхпроводящие свойства появляются у него при температуре −219 градусов Цельсия. Однако при последующем уменьшении давления эта фаза остается метастабильной, а температура перехода поднимается до −206 градусов Цельсия.
Затем данные, полученные с помощью численного моделирования, ученые подтвердили и в эксперименте, синтезировав как несверхпроводящий гидрид UH5 при давлении в 50 тысяч атмосфер, так и высокотемпературные сверхпроводники UH7 — при 310 тысячах атмосфер и UH8+δ — при 450 тысячах атмосфер. Кристаллографические данные полностью подтвердили теоретические оценки.
По словам авторов работы, полученные результаты говорят о перспективности исследования гидридов урана и других актиноидов в качестве потенциальных высокотемпературных сверхпроводников. По температуре перехода в сверхпроводящее состояние полученные соединения пока уступают как гидридам других элементов, так и, например, купратным соединениям, однако условия, при которых они могут быть получены и остаются устойчивыми, делают полигидриды урана (так же, как гидриды актиния и тория) крайне перспективными. Одним из возможных способов повысить температуру перехода авторы работы называют легирование соединений другими элементами.
Группа Артема Оганова работает над алгоритмом USPEX с 2004 года. Например, с помощью него были предсказаны и объяснены неизвестные соединения натрия и хлора, предсказаны новые формы оксида алюминия и сверхтвердого пентаборида вольфрама.
В изначальной версии заметки содержалась неточность: метод проекторно-присоединенных плоских волн был назван методом проекционных соединительных волн. Редакция приносит свои извинения.
Александр Дубов
Как ученые собирают идеальную солнечную батарейку
В первый день лета 2023 года группа Стефана де Волфа объявила, что создала солнечный элемент с рекордной эффективностью — 33,7 процента. Это почти на десять процентов выше, чем у лучших коммерческих элементов. Хитрость здесь в том, что все последние элементы-рекордсмены — двухслойные. Рассказываем, почему кремниево-перовскитные тандемы начали обгонять своих предшественников-одиночек, чем они похожи на болиды Формулы-1 и кто в этой гонке фаворит. Солнце под капотом Главная метрика, которая отличает хороший солнечный элемент от элемента похуже, — его эффективность (или КПД). Эта величина показывает, какую часть всей энергии солнечного света, упавшего на поверхность батареи, удалось превратить в электрическую. Это превращение — процесс многостадийный, и потери энергии происходят на каждом этапе: от поглощения света до передачи электронов непосредственно в электрическую цепь. Поэтому суммарная эффективность элемента обычно оказывается ниже — в зависимости от количества дефектов в полупроводнике, качества контактов, толщины активного слоя и особенностей конструкции. Но есть тут и одно фундаментальное ограничение — ширина запрещенной зоны полупроводника, на котором работает солнечный элемент. От нее зависит, сколько солнечного света может в принципе поглотить элемент и сколько электронов, способных проводить ток, появится в его активном слое. Чтобы солнечный элемент работал эффективно, как можно больше фотонов должны превращать непроводящие электроны в полупроводнике в проводящие. Для этого нужно подобрать материал, у которого запрещенная зона будет подходящего размера. Если запрещенная зона слишком широкая, большая часть фотонов пройдет сквозь солнечный элемент и не поглотится. Эффективность такого элемента, конечно, высокой не будет. Но и материал со слишком маленькой запрещенной зоной не сделает элемент эффективным. От одного фотона все равно получается только одна пара электрон-дырка, а остаток энергии рассеивается в виде тепла. Кроме того, большая часть света поглощается в приповерхностной области полупроводника, поэтому эта область быстро нагревается, что может быть вредно для солнечного элемента. Получается, что с увеличением ширины запрещенной зоны доля полезной солнечной энергии сначала растет, а затем начинает уменьшаться. Для такого света, какой падает на поверхность нашей планеты (в нем больше всего фотонов обладают энергией примерно 2,5 электронвольта), максимум этой кривой (то есть оптимальное значение ширины запрещенной зоны) находится в районе 1,34 электронвольта. Но даже если удастся найти материал с запрещенной зоной именно такой ширины и построить из него солнечный элемент, его эффективность все равно не будет стопроцентной. В 1961 году нобелевский лауреат Уильям Шокли и Ханс-Йоахим Квайссер рассчитали, что с учетом всех потерь эффективность однослойного солнечного элемента в принципе не может быть выше 30 процентов. Предел Шокли — Квайссера несколько раз уточняли, и на сегодняшний день общепринятое значение предела — [note=3024|33,7 процента]. Это значит, что даже в идеальном случае можно превратить в электричество чуть больше трети солнечной энергии. Остальная — потеряется: 47 процентов энергии превратится в тепло, 18 процентов не получится поглотить вообще и еще 0,2 процента уйдет за счет рекомбинации только что сгенерированных электронов и дырок. На чем поедем Одним из самых близких к идеалу оказался кремний — у него ширина запрещенной зоны от 1,12 до 1,15 электронвольта. Это немного меньше оптимальных 1,34 электронвольта, поэтому и теоретический максимум будет ниже предела Шокли — Квайссера: около 29,4 процента. Вообще, с кремнием человечеству крупно повезло. Он не только обладает запрещенной зоной нужной ширины, но еще и достаточно инертен. Кроме того, кремний и его соединения часто встречаются в земной коре. Поэтому кремниевые солнечные элементы несложно произвести, они стабильны и хорошо изучены. Рекорд эффективности, которого пока удалось добиться для кремния, — 26,1 процента, всего на три процента ниже теоретического максимума. А лучшие ячейки, которые производят серийно, уже добрались до 24 процентов. Правда, высокая эффективность стоит дорого. Кремний для солнечных элементов должен быть очень чистым — не ниже 99,9999 процента (на каждый миллион атомов кремния разрешается один примесный атом). Чтобы получить такие кристаллы, кремний нагревают до температур выше полутора тысяч градусов Цельсия, это очень долгий и дорогой процесс. По мере того, как технологии совершенствуются, а в Китае и США открываются масштабные производства, кремниевые элементы, а с ними и солнечное электричество постепенно дешевеют: в 2020 году стоимость киловатт-часа в некоторых регионах опустилась до 0,04 доллара США. Но технологии нельзя совершенствовать бесконечно, и довольно скоро солнечные элементы дешеветь перестанут. Чтобы соревноваться с кремниевыми элементами, нужно использовать или заметно более дешевый материал, или заметно более эффективный. А в идеале, конечно, — и то и то. Потенциальные соперники, впрочем, пока далеко. Например у арсенида галлия GaAs (и других соединений из группы III-V) ширина запрещенной зоны ближе к оптимальному значению, чем у кремния, и у элементов на его основе эффективность уже добралась до 29,1 процента. Но такие батарейки заметно дороже кремниевых, к тому же запасы исходных материалов для них ограничены. Органические солнечные элементы, наоборот, обходятся дешевле, но малоэффективны (менее 20 процентов), и главное — не очень устойчивы. Основной конкурент сейчас — солнечные элементы на основе перовскитов, смешанных галогенидов свинца с общей формулой APbI3. Они тоже дешевые и за десять лет догнали кремниевые по эффективности. Сейчас рекорд у этих видов одинаков — 26,1 процента. Но у перовскитных элементов пока серьезные проблемы с устойчивостью. Кроме того, они тоже приближаются к теоретическому потолку эффективности — новые рекорды появляются все реже. И даже если эффективность в 30 процентов на перовскитах в принципе достижима, добираться до нее придется еще долго. Автомобиль-гибрид Поскольку прямой замены кремнию, в общем-то, нет, а более эффективные и дешевые элементы все равно нужны, ученые предложили добавить к нему что-то, что незадорого расширит диапазон поглощаемого света. Например, дополнительный слой из второго полупроводника. В таких тандемных элементах верхний полупрозрачный слой — из полупроводника с широкой запрещенной зоной, он поглощает только самые высокоэнергетические фотоны. А фотоны с более низкой энергией проходят в нижний слой с более узкой запрещенной зоной и поглощаются уже там. Таким образом можно убить сразу двух зайцев: поглощать большую долю солнечного излучения и не давать элементу слишком сильно нагреваться. У кремния ширина запрещенной зоны меньше оптимальных 1,34 электронвольта, поэтому он отлично подходит для нижней части тандема. У полупроводника для верхнего слоя такого тандема ширина запрещенной зоны (и по теоретическим расчетам и по данным экспериментального сравнения) должна быть около 1,7 электронвольта — в этом случае каждый фотон поглотится там, где сможет дать наибольший вклад в эффективность.Лучшим кандидатом в напарники кремнию оказались перовскиты. Солнечные элементы из них изготавливают методами «мокрой химии» в мягких условиях. Поэтому перовскитный слой можно наносить поверх уже готового кремниевого элемента. А меняя состав перовскита (например, замещая часть иода в его решетке на бром и хлор), можно подобрать нужное значение запрещенной зоны с точностью до сотой доли электронвольта. Тандемы идут на обгон Первые кремний-перовскитные солнечные элементы появились в 2015 году. Это были четырехтерминальные тандемы — с отдельной парой контактов для каждого полупроводникового слоя. По сути такой тандем представлял собой два отдельных солнечных элемента, изготовленных по отдельности и скрепленных только механически. При этом все слои в наружном перовскитном элементе, через который свет проходил первым, авторы старались сделать максимально прозрачными (разумеется, кроме непосредственно активного перовскитного слоя), чтобы ни один фотон не поглотился зря. Правда результаты первых экспериментов оказались неутешительны — эффективность всего 13,4 процента, что на тот момент уже было даже ниже, чем у каждой из частей по отдельности. Поэтому параллельно с четырехтерминальными тандемами ученые стали работать над альтернативной схемой — двухтерминальной ячейкой. В таких элементах два полупроводника соединены не только механически, но и электрически. Элемент имеет только одну пару контактов: с одного полупроводника в цепь идут электроны, а с другого — дырки. Соединение последовательное, так что напряжение, производимое двумя ячейками, суммируется. Для лучшей производительности ток в двух частях стараются уравнять — обычно этого добиваются, меняя толщину перовскитного слоя. Делать двухтерминальные тандемы, с одной стороны, проще: в них меньше слоев. С другой — сложнее: перовскит приходится наносить прямо поверх кремниевого элемента. А вот требования максимальной прозрачности всех вспомогательных слоев остаются такими же, как и для четырехтерминального тандема. Наибольшую популярность получили двухтерминальные тандемы, в которых электроны снимаются с перовскитной части, а дырки — с кремниевой части. Для транспорта электронов в них используют тонкие слои фуллеренов и их производных, а для облегчения экстракции электронов между перовскитом и фуллереном наносят фторид магния или фторид лития. Усовершенствованные кремний-перовскитные тандемы резко пошли на обгон: уже в 2018 году они обошли кремний, в конце 2020 — преодолели теоретический предел для кремния, а в 2022 — первыми среди солнечных батарей взяли высоту в 30 процентов эффективности. Параллельные треки Главной проблемой кремний-перовскитных тандемов остается рекомбинация электронов и дырок в перовските, и особенно — на его границе с электрон-проводящим фуллереновым слоем. В 2022 году вышло сразу две статьи, авторы которых решили эту проблему разными способами. Цинь Синь Юй и его коллеги из Федеральной Политехнической школы Лозанны (EPFL) придумали текстурировать поверхность кремния в виде пирамид. Такая поверхность позволяет улавливать больше фотонов: свет, который отразился от одного склона пирамиды, может снова поглотиться на соседнем. Перовскитный слой поверх наносили в две стадии: сначала термически напыляли основу будущего перовскита — иодид свинца с добавкой иодида цезия, затем поверх накапывали раствор иодида и бромида формамидиния. В этом случае поверхность перовскита тоже получается текстурированной. Наносить на нее стабилизирующие слои неудобно — покрытие будет очень неравномерным. Чтобы решить эту проблему, авторы добавили к прекурсорам для перовскита пентафторбензил-фосфористую кислоту: она пассивирует граничные дефекты и помогает перовскиту лучше закристаллизоваться. В результате зерна становятся крупнее, а рекомбинация носителей заряда снижается. Эффективность у такой конструкции 31,25 процента — на пять процентов выше, чем у лучших элементов из чистого кремния. А вот Сильвия Мариэтти и ее коллеги из Берлинского центра материалов и энергии имени Гельмгольца (HZB) использовали кремниевую ячейку с гладкой верхней частью. В их перовските было три типа анионов: к иоду и брому добавили пять мольных процентов хлора. Для пассивации дефектов к перовскитному слою они добавили иодид пиперазиния. Мариотти и ее коллеги нашли добавку, которая также существенно облегчает экстракцию электронов из перовскитного слоя. В результате эффективность получилась даже выше, чем у группы Циня, — 32,5 процента. Тандемы-рекордсмены из двух новых статей довольно сильно отличаются друг от друга — и по химическому составу, и по количеству вспомогательных слоев. Получается, что к идеальной батарейке ученые пока двигаются разными путями. И эти пути, вероятно, не единственные возможные. В июне 2023 года Стефан де Волф из Научно-технологического университета имени короля Абдаллы заявил, что продвинулся еще дальше: его тандем сработал с эффективностью 33,7 процента. Правда, как именно он этого добился, пока неизвестно. Финишная прямая? Гонка разных групп за новыми рекордами от NREL чем-то напоминает соревнования Формулы-1. Очень красиво и эффектно, но имеет мало общего с реальной жизнью. Все ячейки-рекордсмены маленькие (площадью порядка одного квадратного сантиметра), а манипуляции с ними производятся вручную и в сухом боксе. Выпускать такие устройства для массового использования — все равно что продавать болиды Формулы-1 в качестве семейного авто. Эффективность, конечно, высокая, но кто же их купит? Чтобы выйти на рынок, нужно собрать из них модули большого размера, которые можно производить в промышленных условиях — без сухого бокса и других сложных приспособлений. И хорошо бы, чтобы эффективность при этом не потерялась. Автор свежего рекорда Стефан де Волф считает, что промышленные кремний-перовскитные модули должны показывать эффективность хотя бы на три процента выше, чем чистый кремний, — только в этом случае их серийное производство будет экономически оправдано. Впрочем, эту планку тандемы скорее всего преодолеют без проблем. Уже сейчас существуют тандемные модули большой площади с эффективностью 28,6 процента. Главной трудностью остается стабильность. Слабое звено в тандеме — конечно, перовскит. Если кремниевые солнечные элементы работают десятилетиями, почти не теряя эффективности, то перовскиты только недавно преодолели порог в пять тысяч часов (около семи месяцев) непрерывной работы. А ведь стабильность тандемов изучена даже меньше, чем стабильность чисто перовскитных ячеек. Впрочем, первые позитивные результаты уже появились. Например, ученые из группы Стефана де Волфа научились эффективно инкапсулировать тандемы с помощью стекла и полиуретана. В результате их элемент проработал целый год под открытым небом — в условиях высокой температуры и влажности — и сохранил 80 процентов своей начальной эффективности. А пока двухтерминальные тандемы гоняются друг с другом, у четырехтерминальных может снова появиться шанс: в них меньше требований к перовскитной ячейке, например, нет запрета на использования диоксида титана. Поэтому у ученых больше возможностей для стабилизации. А поскольку два полупроводника не связаны друг с другом, то, если перовскитная ячейка через несколько лет все же выйдет из строя, ее можно будет просто заменить новой. Так что со временем фаворит в этой гонке может смениться. И ждать этого, возможно, осталось недолго: уже сейчас четырехтерминальные тандемы показывают эффективность в 26 процентов и выше, до своих двухтерминальных соперников им остались считанные проценты.