Физики увидели следы сверхпроводимости при температуре −13 градусов Цельсия

A. Drozdov et al.
Сразу две группы ученых обнаружили, что гидрид лантана LaH10 становится сверхпроводящим при рекордно высокой температуре. Первая группа утверждает, что температура перехода в сверхпроводящее состояние составляет Tc ≈ 215 кельвинов (−56°C). Вторая группа заявляет о еще большей температуре Tc ≈ 260 кельвинов (−13°C). Правда в обоих случаях образцы были под давлением в миллионы атмосфер. Препринты обеих работ выложены на сайте arXiv.org.
В январе 2019 статья второй группы была опубликована в Physical Review Letters, а Physics выпустил краткий обзор работы ученых.
Явление сверхпроводимости было открыто еще в 1911 году, когда голландский физик Хейке Камерлинг-Оннес охладил образец ртути до температуры порядка трех градусов Кельвина (−270 по Цельсию) и обнаружил, что сопротивление металла обратилось в ноль. Впоследствии было установлено, что подобными необычными свойствами обладает не только ртуть, но и остальные металлы, а также более сложные соединения. Постепенно ученые находили материалы со все более и более высокой температурой перехода в сверхпроводящее состояние (эту температуру называют критической температурой). Очередной рекорд был установлен в 1993 году, когда физики синтезировали купрат HgBa2Ca2Cu3O8+x, критическая температура которого достигала 164 кельвинов (—109 °C), что превысило температуру кипения жидкого азота. Если бы ученым удалось получить вещество, которое становится сверхпроводником уже при комнатной температуре, это привело бы к большому прогрессу в развитии техники — например, уменьшило потери при передаче электроэнергии и позволило изготовить легкие и сильные электромагниты. К сожалению, комнатная сверхпроводимость пока еще остается недостижимой мечтой.
Это открытие впервые подтвердило теорию Мигдала-Элиашберга (Migdal-Eliashberg theory), которая объясняет явление высокотемпературной сверхпроводимости связыванием электронов в пары за счет обмена фононами. Она предсказывает, что при достаточно высокой энергии фононов и достаточно сильной связи между фононами и электронами критическая температура сверхпроводника может быть очень большой. Например, она утверждает, что металлический водород переходит в сверхпроводящее состояние при температуре около 200–400 кельвинов и давлении порядка 5 миллионов атмосфер. Также ожидалось, что подобное поведение будет наблюдаться в веществах с большим содержанием водорода (гидридах). К сожалению, эти предсказания не всегда подтверждались на практике — например, метан CH4 «разваливается на части» при давлении выше 5 миллионов атмосфер, так и не достигнув сверхпроводящего состояния.
К настоящему времени ученые проверили почти все бинарные гидриды, которые могли бы стать сверхпроводниками в соответствии с теорией Мигдала-Элиашберга, и постепенно переключаются на более сложные соединения. В частности, в прошлом году теоретики обнаружили сразу два семейства гидридов, критическая температура которых сравнима с комнатной — YH10 (критическая температура Tc ≈ 320 кельвинов, давление P ≈ 2,5 миллиона атмосфер) и LaH10 (Tc ≈ 280 кельвинов и P ≈ 2 миллионов атмосфер). Оба этих соединения имеют клатратную структуру: атомы водорода соединены друг с другом ковалентными связями и удерживают атомы металла в центре полостей с помощью ионных связей. К сожалению, чтобы изготовить эти соединения, нужно нагревать металлические образцы в водородной атмосфере до температуры порядка тысячи градусов Кельвина, параллельно поддерживая давление более двух миллионов атмосфер. Такие условия сложно создать и поддерживать, а потому синтезировать LaH10 впервые удалось только в декабре 2017 года.
На этот раз группе ученых под руководством Михаила Еремца удалось не только синтезировать LaH10, но и доказать, что соединение становится сверхпроводником при температуре порядка 215 Кельвинов. Чтобы изготовить соединение, физики помещали лантановый образец (чистота более 99,99 процентов) в водородную атмосферу с давлением около тысячи атмосфер, а затем сжимали его с помощью алмазной наковальни до давления порядка 1,7 миллиона атмосфер. Параллельно ученые следили за состояние образца с помощью рамановской спектроскопии — оказалось, что при давлении P > 1,46 миллиона атмосфер металлический лантан превращается в диэлектрик LaH3. После этого исследователи нагрели образец до температуры чуть меньше тысячи градусов Кельвина с помощью YAG-лазера и измерили, как сопротивление образовавшегося материала меняется при последующем охлаждении.
Дмитрий Трунин