Японские инженеры создали роботизированный захват, способный ловить быстро падающие мягкие объекты, не деформируя их. Он использует два типа датчиков, которые с высокой точностью отслеживают положение падающего объекта, расстояние до него и угол наклона. Описание системы доступно на сайте Токийского университета.
Захват предметов — это одна из наиболее востребованных задач робототехники. К примеру, Amazon, стремящаяся автоматизировать свои склады, проводит ежегодные соревнования среди разработчиков хватающих роботов. С обычными задачами, такими как захват жестких и даже двигающихся предметов, современные роботы справляются хорошо и точность захвата некоторых из них достигает почти 90 процентов. Но есть и более сложные задачи, такие как захват мягких и хрупких предметов. В этой области уже есть некоторые наработки, в которых, как правило, применяются мягкие материалы для того, чтобы не повредить объект.
Группа инженеров из лаборатории Масатоси Исикавы (Masatoshi Ishikawa) Токийского университета применили другой подход и смогли решить еще более сложную задачу — захват быстро двигающихся мягких предметов. На концах манипуляторов установлены полимерные площадки для смягчения удара при захвате, но основной вклад в аккуратность вносят не они, а активная система отслеживания положения летящего объекта. Она состоит из двух высокоскоростных камер, установленных недалеко от захватов, и двух высокоскоростных датчиков расстояния и угла наклона.
На первом этапе полета захватываемого объекта система отслеживает его полет с помощью внешних высокоскоростных камер. В это время роботизированные захваты уже сдвигаются, но между ними остается достаточно большое расстояние. Когда объект находится достаточно близко, система переключается на данные от датчиков в самих захватах. Каждый из этих двух датчиков состоит из фотодетектора в центре и нескольких светодиодов вокруг него. Поскольку пары светодиодов излучают модулированный свет, итоговое излучение имеет отличную от двух исходных фаз, по которой можно вычислить расстояние до объекта и угол его наклона относительно захвата.
Поскольку датчики расстояния работают с частотой обновления, равной одной миллисекунде, система успевает подвести оба захвата к падающему объекту и перестать двигать их практически сразу же после обнаружения контакта. Благодаря этому она может хватать даже очень мягкие объекты, такие как кусочек маршмэллоу, почти не деформируя их.
Существуют и другие быстрые и ловкие роботы. В начале 2018 года американские инженеры представили дельта-робота размером около двух сантиметров, способного выполнять манипуляции с точностью до пяти микрометров и делать циклические движения с частотой 75 раз в секунду.
Григорий Копиев
Вероятно, из-за выброса гормона октопамина
Итальянские энтомологи придумали, как сделать выращенных в неволе самцов средиземноморских плодовых мух более успешными любовниками. Эксперименты показали, что если дать мужским особям этих насекомых подраться с роботизированной моделью сородича, то впоследствии они будут больше времени тратить на ухаживания за самками и спаривание с ними. Кроме того, у них вырастет процент успешных попыток спаривания. Как отмечается в статье для журнала Biological Cybernetics, результаты исследования повысят эффективность программ по сокращению численности насекомых, в ходе которых в дикую природу массово выпускают стерилизованных самцов. Среди насекомых много вредителей сельского хозяйства, переносчиков инфекций и инвазивных видов, угрожающих целым экосистемам. Один из наиболее эффективных и безопасных для окружающей среды методов борьбы с ними заключается в том, чтобы в большом количестве выращивать в неволе стерильных самцов определенных видов и выпускать их в природу. После того, как такие особи спарятся с дикими самками, те не дадут потомства. В результате местная популяция вида сократится или вовсе исчезнет. Несмотря на все достоинства этого подхода, у него есть и недостатки. Одна из проблем заключается в том, что выращенные в неволе и стерилизованные самцы приспособлены к жизни в природе хуже своих диких сородичей. Например, они зачастую плохо справляются с поиском и оплодотворением самок. Команда энтомологов под руководством Донато Романо (Donato Romano) из Школы передовых исследований имени Святой Анны в Пизе решила сделать выращенных в неволе самцов насекомых более успешными любовниками. Ученые сосредоточили внимание на средиземноморских плодовых мухах (Ceratitis capitata) — широко распространенных вредителях, личинки которых питаются плодами более 200 видов растений. С этими насекомыми часто борются, выпуская в природу стерилизованных самцов. Романо и его соавторы обратили внимание, что самцы средиземноморских плодовых мух агрессивно ведут себя по отношению друг к другу. Мужские особи этих насекомых занимают на листьях или плодах растений участки, где устраивают брачные демонстрации для привлечения самок. Хозяин участка ревностно защищает его от конкурентов, вступая с ними в ритуализированные поединки, включающие взмахи и удары крыльями, а также покачивания и толчки головой. Авторы предположили, что сражения с соперниками запускают в организме мух-самцов изменения, которые впоследствии позволяют им эффективнее привлекать и оплодотворять самок. Чтобы проверить данную идею, исследователи провели серию экспериментов с выращенными в неволе самцами плодовых мух. Они сажали по одной мужской особи за раз в прозрачный контейнер, на дне которого по окружности лежали пять дисков, вырезанных из листьев цитрусовых деревьев. После этого подопытных мух на двадцать минут оставляли в одиночестве, чтобы они заняли один из дисков в качестве демонстрационной площадки. Затем авторы помещали в центр окружности между дисками роботизированную модель самца, управляемую с помощью магнита, Ее направляли к диску, выбранному настоящим самцом, чтобы сымитировать вторжение соперника. Робомуха находилась у границ занятого участка тридцать секунд, после чего возвращалась в центр окружности на шестьдесят секунд. Данная последовательность действий повторялась в течение пятнадцати минут. Подопытные самцы видели в роботах соперников и демонстрировали агрессивное поведение, защищая от них свои участки. На следующем этапе к самцам плодовых мух, которые сразились с роботом, на час подсаживали половозрелых самок. Исследователи фиксировали, сколько времени у мужских особей займет вибрациями крыльями (это часть брачной демонстрации), как быстро они перейдут к совокуплению и как долго оно продлится. Кроме того, они оценивали, закончится ли попытка спариться успешно или самка отвергнет ухаживания. В качестве контрольной группы выступали самцы, которые не сталкивались ни с живыми, ни с роботизированными соперниками. В обеих группах было по 120 особей. Как и ожидали авторы, встреча с роботом-конкурентом помогла самцам плодовых мух эффективнее привлекать самок. По сравнению с сородичами из контрольной группы они дольше вибрировали крыльями, позже переходили к совокуплению и дольше оплодотворяли самок. В целом такие самцы тратили больше времени на ухаживания и спаривание. А их попытки совокупиться с самками чаще заканчивались успешно. Романо и его коллеги предполагают, что во время драки с соперником (настоящим или роботизированным) в гемолимфу мух-самцов выбрасывается большое количество октопамина — аналога норадреналина у беспозвоночных. Это соединение активирует октопаминергические нейроны и тем самым стимулирует агрессивное и брачное поведение. Авторы надеются, что результаты их исследования сделают проекты по контролю численности вредных насекомых более эффективными. Однако для этого нужно придумать, как тренировать стерилизованных самцов в промышленных масштабах. Ранее мы рассказывали о том, как нидерландские инженеры создали легкого летающего робота, который позволяет изучать механизмы, лежащие в основе полета насекомых. Несмотря на отсутствие хвоста он может управлять движением вокруг вертикальной оси с помощью движений крыльев, создающих крутящие моменты по остальным осям. Эксперименты с роботом позволили подтвердить гипотезу, согласно которой дрозофилы и некоторые другие насекомые используют аналогичный механизм во время резких поворотов.