Австралийские исследователи создали алгоритм для роботов, позволяющий им захватывать неподвижные и двигающиеся объекты с высокой точностью. Тесты показали, что робот успешно справляется с захватом двигающихся бытовых предметов в 88 процентах случаев, рассказывают разработчики в статье, которая будет представлена на конференции RSS 2018.
Захват предметов — сложный для роботов процесс, но, поскольку его можно применить во множестве промышленных роботов, многие инженеры работают над решением этой задачи. Для этого робота необходимо не только оснастить хорошо сконструированным манипулятором, но и научить его быстро воссоздавать объемную модель предмета и точно контролировать давление во время хватания. Существующие разработки уже умеют успешно захватывать предметы в большинстве случаев, но почти всегда они работают в со статичными предметами простой формы, а также в практически идеальных условиях, где вариативность окружения крайне мала — например, на конвейере.
Некоторые компании, стремящиеся максимально автоматизировать рабочий процесс, например, Amazon, даже проводят соревнования среди разработчиков роботов для захвата предметов. Группа инженеров из под руководством Юргена Ляйтнера (Jurgen Leitner) из Квинслендского Технологического Университета, победившая в этом конкурсе в 2017 году, представила новый алгоритм, позволяющий роботам быстро оценивать объекты для захвата, даже если они не находятся в неподвижном положении.
На манипуляторе робота установлена камера, создающая цветной снимок и карту глубины для него. После этого сверточная нейросеть создает на основе карты глубины новое изображение, на котором каждому пикселю присвоено предполагаемое качество захвата, угол поворота манипулятора и ширина манипулятора, необходимая для захвата. Затем на основе этих параметров вычисляется оптимальный вариант захвата и манипулятор получает соответствующую команду.
В отличие от предыдущих подобных разработок, алгоритм проводит эти расчеты с частотой до 50 раз в секунду и благодаря этому может корректировать свое движение в реальном времени, даже если цель сдвинулась:
Разработчики обучили алгоритм на популярном датасете для этой задачи, созданном инженерами из Корнеллского университета. Он состоит из 885 объектов и тысяч захватов, которые исследователи модифицировали и превратили в данные о более чем 51 тысяче захватов. После этого разработчики протестировали алгоритм на реальных предметах, таких как кружка или отвертка, и специальных напечатанных 3D-моделях, разработанных в качестве сложных примеров объектов для хватающих роботов. В результате робот успешно справился с захватом сложных двигающихся предметов в 83 процентах случаев, а с бытовыми предметами — в 88 процентах. Для неподвижных объектов эти показатели еще выше — 84 и 92 процента соответственно.
В качестве сложных моделей для захвата авторы использовали датасет других исследователей, составленный ими в прошлом году. Они также создали алгоритм для захвата предметов, но их робот способен делать это только с неподвижными предметами.
Григорий Копиев
Пока лишь со скоростью 1,6 миллиметра в секунду
Американские инженеры разработали робота, способного автономно передвигаться в толще сыпучего материала, проталкивая себя вперед с помощью двух конечностей, напоминающих плавники. В испытаниях робот продемонстрировал способность передвигаться в песке на глубине около 127 миллиметров со скоростью до 1,6 миллиметра в секунду. Статья опубликована в журнале Advanced Intelligent Systems. Сыпучие материалы, такие как песок, мягкие почвы, снег или лунный реголит, представляют собой довольно сложную среду для передвижения. Объекты, движущиеся в их толще, испытывают высокое сопротивление, возрастающее с глубиной погружения. Кроме того, сыпучая среда ограничивает возможности зондирования и обнаружения препятствий. Тем не менее инженеры пытаются создать роботов, способных передвигаться в таких условиях. Например, американские разработчики представили прототип робочервя, способного двигаться в толще песка. Для снижения сопротивления он выдувает перед собой воздух, и одновременно разматывает мягкую оболочку своей передней части, выталкивая ее вперед, в то время как остальное тело остается неподвижным. Это позволяет значительно снизить сопротивление движению. Однако для его работы требуется воздух, который приходится подводить с поверхности. Создать робота, который смог бы передвигаться в песке автономно, решили инженеры под руководством Ника Гравиша (Nick Gravish) из Калифорнийского университета в Сан-Диего. Разработанный ими робот перемещается, проталкивая себя вперед через толщу сыпучей среды с помощью двух гибких конечностей, напоминающих плавники морской черепахи. Конечности состоят из пяти звеньев. Каждое звено способно вращаться относительно предыдущего, но углы их отклонений ограничиваются с помощью фиксаторов. В движение оба плавника приводятся через червячную трансмиссию с помощью единственного электромотора. При этом трансмиссия воздействует только на первые ближайшие к корпусу звенья. Благодаря фиксаторам, ограничивающим углы поворотов звеньев, при движении вперед конечности изгибаются, испытывая меньшее сопротивление среды, а при движении назад наоборот, распрямляются, позволяя роботу отталкиваться от песка. На концах конечностей разработчики поместили сенсоры, с помощью которых робот может обнаруживать расположенные сверху объекты. Корпус робота длиной около 26 сантиметров имеет прямоугольное сечение и утолщение в передней части, которое позволяет снизить сопротивление песка при движении. Нос робота заострен и имеет наклонную поверхность сверху, которая необходима для компенсации подъемной силы, возникающей при движении в песке. С этой же целью по бокам после проведенных тестов пришлось разместить два дополнительных наклонных неподвижных плавника, так как робот имел тенденцию задирать нос при движении под действием выталкивающей силы. Чтобы избежать попадания песчинок в механизм, конечности поместили в чехлы из нейлоновой ткани. Разработчики протестировали робота, погруженного на глубину 127 миллиметров в песок, сначала в небольшом искусственном резервуаре, а после в естественных условиях в песке на пляже. В сухом песке робот смог развить скорость 1,6 миллиметра в секунду. В более влажном песке на пляже робот двигался медленнее, со скоростью около 0,57 миллиметра в секунду. В будущем инженеры планируют увеличить скорость передвижения робота, а также научить его самостоятельно погружаться в песок. Ранее мы рассказывали об исследовании, в котором физики выяснили, что происходит со структурой песка при передвижении по нему с помощью прыжков. Они обнаружили, что при правильно подобранном времени задержки между приземлениями и новым толчком, можно увеличить высоту прыжка на 20 процентов и даже больше.