Физики из США и Великобритании впервые экспериментально получили «фотонные капли» — конфигурации электромагнитных полей, которые возникают в нелинейной нелокальной оптической среде за счет уравновешивания сил притягивания и отталкивания. Для этого ученые следили за эволюцией временного профиля и орбитальным моментом лазерного пучка, распространяющегося в стекле SF6, и сравнивали их с результатами теоретических расчетов. Статья опубликована в Physical Review Letters, препринт работы выложен на сайте arXiv.org.
В вакууме электромагнитные волны не могут взаимодействовать друг с другом благодаря линейности уравнений Максвелла (если пренебречь квантовыми эффектами). Дифференциальное уравнение называется линейным, если для любых функций f и g, которые его решают, функция h = f + g тоже является решением. Другими словами, в линейных уравнениях нет членов, которые «перемешивают» решения, встретившиеся в одной точке. В случае уравнений Максвелла это означает, что электромагнитные волны не могут «почувствовать» присутствие друг друга, а сигналы сложной формы постепенно «расползаются» при движении в пространстве.
Тем не менее, в нелинейных средах, в которых коэффициент преломления и диэлектрическая проницаемость сильно изменяются в зависимости от амплитуды или частоты волны, эти утверждения неверны. Напротив, в нелинейных средах электромагнитные волны могут взаимодействовать друг с другом и формировать сложные структуры, которые сохраняют свою форму при движении сквозь среду. Такие структуры называются солитонами. Разумеется, солитоны возникают не только в оптике, но и в других системах, которые описываются нелинейными уравнениями — например, в гидродинамике (уравнение Кортевега — де Фриза) или в живых организмах (нервный импульс). Более подробно про эти явления можно прочитать в статье доктора технических наук А. Голубева. Впервые оптические солитоны были теоретически предсказаны в 1973 году американскими физиками Акирой Хасегавой (Akira Hasegawa) и Фредом Таппертом (Fred Tappert), а первое экспериментальное подтверждение было получено в 1980 году.
В январе этого года группа ученых под руководством Мануэля Валиенте (Manuel Valiente) ввела понятие «фотонной капли» — конфигурации электромагнитных полей конечного размера, которая самопроизвольно стабилизируется за счет противодействия сил притягивания и отталкивания и сохраняет свой размер, форму и плотность в результате воздействия внешних возмущений. По сути своей «фотонные капли» очень похожи на солитоны, однако они не обязаны сохранять свою форму при распространении сквозь среду — «фотонная капля» совпадает с солитоном только в основном состоянии, тогда как возбужденная «капля» может изменяться во время движения. В этой теоретической статье ученые показали, что «фотонные капли» должны возникать в результате «противоборства» нелинейных членов, которые ответственны за рассеяние в s-волне и d-волне, которое приводит к образованию p-симметричного основного состояния с нулевым орбитальным моментом. Кроме того физики показали, что с помощью «фотонных капель» удобно описывать распространение мощного лазерного луча сквозь нелинейную нелокальную среду, а также заметили, что «фотонные капли» напоминают капли одномерного жидкого гелия и капли уравнения состояния (EOS droplets) в конденсате Бозе — Эйнштейна.
На этот раз та же группа ученых впервые подтвердила существование «фотонных капель» в прямом эксперименте. Для этого исследователи направили зеленый лазерный пучок (λ = 532 нанометра) с p-симметричным профилем на легированное свинцом стекло, показатель преломления которого линейно зависит от температуры (SF6). Для придания профилю нужной формы ученые использовали пространственный модулятор света. Распространение электрического поля в таком стекле описывается нелокальным уравнением Шрёдингера. Нелокальность в данном случае означает, что потенциал взаимодействия (эффективный коэффициент преломления) задается интегралом по всему пространству, то есть поведение поля в точке определяется состоянием среды в целом. Чтобы теоретически оценить этот потенциал, ученые выбирали анзац для напряженности пучка и выписывали коэффициент преломления среды в мультипольном приближении (разложение до четвертого порядка), а затем приближенно посчитали интеграл. Это позволило ученым оценить псевдоэнергию «фотонной капли» в зависимости от радиуса капли <r> и отношения амплитуд δ = c−/c+, которые связаны с состояниями, имеющими отрицательный и положительный орбитальный момент.
Затем ученые исследовали эволюцию формы и коэффициентов <r> и δ для «фотонных капель», которые распространялись сквозь стекло в реальном эксперименте. Для этого физики разреза́ли 40-сантиметровый слой стекла на четыре участка толщиной 10 сантиметров и снимали с помощью камеры профили электромагнитного поля на выходе из образца. Изменяя число участков, исследователи управляли длиной оптического пути пучка и следили за эволюцией формы «капли». В другой серии опытов физики заменяли камеру пространственным модулятором света, чтобы разложить «каплю» на моды с различным значением орбитального момента, и измеряли значение δ в зависимости от длины пути. Сравнивая зависимости, полученные экспериментально, с результатами теоретических расчетов, ученые подтвердили, что распространение лазерного пучка действительно можно описать с помощью «фотонных капель». Таким образом, физики впервые увидели образование «фотонных капель» на практике.
В октябре 2017 года бразильские исследователи теоретически предсказали, что за счет комбинационного рассеяния фотоны могут связываться в пары, напоминающие куперовские пары в сверхпроводниках, а затем увидели этот эффект на практике. А в феврале этого года американские физики впервые получили фотонные тримеры — связанные состояния из трех фотонов. Для этого ученые направляли лазерные импульсы в нелинейную квантовую среду (бозе-конденсат атомов рубидия) и добивались формирования ридберговских поляритонов.
Дмитрий Трунин
При этом модуль Юнга и предел текучести не повлияли на изменение пространственной метрики
Физики из Франции изучили механизмы, отвечающие за образование цветков из сыра тет-де-муан, когда его сервируют, соскабливая тонкий верхний слой. Главным фактором, который повлиял на изменение пространственной метрики, стал коэффициент трения, который продемонстрировал плавное изменение вдоль радиуса сырной головы. При этом энергия разрушения оказалась достаточно большой и обеспечила переход к режиму пластического сдвига. Авторы работы отметили, что их результаты могут принести пользу для контроля морфогенеза при резке металла. Исследование опубликовано в Physical Review Letters.