Ученые из США и Израиля обнаружили, что интенсивность гамма-излучения Солнца зависит от его активности и положения источника на поверхности, что противоречит всем существующим теоретическим моделям. Для этого исследователи проанализировали данные космического гамма-телескопа «Ферми», собранные в 2008–2018 годах. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org. Расширенная версия работы опубликована в Physical Review D (препринт).
Несмотря на то, что бо́льшая часть излучения Солнца приходится на видимую (44 процента) и инфракрасную (48 процентов) области спектра, наша звезда также является ярким источником гамма-лучей. Энергия фотонов гамма-излучения (гамма-квантов) превышает 100 килоэлектронвольт, что примерно в сто тысяч раз больше энергии фотонов видимого света. В настоящее время ученые рассматривают два принципиально разных механизма образования таких высокоэнергетических фотонов. С одной стороны, фотоны могут возникать в солнечном гало за счет обратного комптоновского рассеяния на электронах космических лучей. Этот эффект довольно хорошо изучен на практике и в теории; в то же время, он работает только во время солнечных вспышек и не позволяет получить энергию более четырех гигаэлектронвольт.
С другой стороны, гамма-кванты могут рождаться внутри Солнца, когда разогнанные до околосветовых скоростей протоны космических лучей врезаются в молекулы солнечного газа. Этот процесс не привязан к солнечным вспышкам и позволяет получить фотоны c энергиями порядка 100 гигаэлектронвольт. Впрочем, ученые до сих пор плохо понимают физику этого процесса. Единственная теоретическая модель, которая объясняет излучение гамма-квантов солнечным диском, — модель SSG (Seckel, Stanev & Gaisser), — была разработана в 1991 году и плохо согласуется с данными наблюдений.
В 2014 году группа ученых под руководством Кенни Нг (Kenny Ng) проанализировала данные космического телескопа «Ферми», наблюдавшего за Солнцем в течение шести лет, и обнаружила у солнечного гамма-излучения несколько свойств, которые нельзя объяснить в рамках модели SSG. Во-первых, интенсивность излучения солнечного диска более чем в 50 раз превышала интенсивность излучения короны (на энергии порядка 10 гигаэлектронвольт). Во-вторых, энергия фотонов достигала 100 гигаэлектронвольт. В-третьих, интенсивность гамма-излучения оказалась отрицательно скоррелирована с солнечной активностью — другими словами, поток гамма-квантов был максимален, когда интенсивность солнечных вспышек и число солнечных пятен были минимальны. Модель SSG предсказывает гораздо меньшую интенсивность излучения, а также не может объяснить сезонные колебания интенсивности. К сожалению, собранных данных оказалось недостаточно, чтобы разработать корректную теорию, а потому ученые продолжили наблюдения.
Теперь исследователи представили результаты аналогичного анализа — однако на этот раз наблюдения покрывали практически весь 11-летний цикл солнечной активности (с 2008 по 2018 год) и были более качественными (то есть имели большее пространственное и энергетическое разрешение) за счет изменения алгоритма обработки данных. Это позволило ученым выделить еще несколько особенностей солнечного гамма-излучения.
Оказалось, что интенсивность излучения зависит не только от фазы цикла, но и от положения точки на поверхности Солнца — иначе говоря, в излучении можно выделить полярную и экваториальную компоненту, которые по-разному изменяются со временем. Полярная компонента практически постоянна в ходе солнечного цикла, а ее спектр резко обрывается после 100 гигаэлектронвольт. В то же время, экваториальная компонента резко возрастает в минимумах солнечной активности (в данном случае, в 2009 году) и пренебрежимо мала в остальные промежутки времени, а ее спектр простирается вплоть до 200 гигаэлектронвольт. Суммарно за весь период наблюдений астрономы зарегистрировали девять фотонов с энергиями более 100 гигаэлектронвольт — все они пришли из экваториальных областей, причем восемь из них были излучены в 2009 году (предыдущий минимум) и еще один в начале 2018 года (начало нового минимума). Кроме того, 13 декабря 2008 года исследователи зафиксировали одно «сдвоенное» событие — две практически одновременные вспышки с энергией более 100 гигаэлектронвольт (вспышки были разделены временны́м промежутком около 3,5 часов). Ученые отмечают, что эти вспышки могут быть связаны с корональным выбросом массы, который начался 12 декабря.
Разумеется, объяснить эти зависимости в рамках модели SSG нельзя, поскольку она предсказывает, что интенсивность излучения не зависит от времени и положения точки на поверхности Солнца. Поэтому ученые рассмотрели несколько альтернативных моделей — например, фокусировку или захват космических лучей магнитными полями Солнца — но ни одна из них так и не смогла воспроизвести наблюдаемые зависимости. Тем не менее, авторы статьи продолжают наблюдать за Солнцем и надеются, что в будущем корректная модель все-таки будет разработана.
С тех пор, как в 2008 году космический телескоп «Ферми» был запущен на орбиту, он успел сделать несколько крупных открытий. Например, в ноябре 2015 года телескоп обнаружил самый мощный гамма-пульсар, светимость которого в двадцать раз превышала светимость предыдущего рекордсмена. В июне 2016 он зафиксировал гамма-всплеск, полная энергия которого эквивалентна массе полной аннигиляции вещества Солнца (~2,5×1054 эрг). В октябре 2017 «Ферми» впервые в истории зарегистрировал гамма-излучение, пришедшее практически одновременно с гравитационными волнами от сливающихся нейтронных звезд. Кроме того, с помощью телескопа ученым удалось увидеть вспышку на обратной стороне Солнца и показать, что темная материя не причастна к избытку гамма-излучения, исходящего из центра Млечного пути. Подробнее про работу телескопа «Ферми» можно прочитать в статьях астрофизика Бориса Штерна, приуроченных к десятилетию миссии [1,2].
Поскольку космические лучи поглощаются веществом Солнца, в окрестности звезды их интенсивность резко падает — получается, будто Солнце отбрасывает характерную «тень» в свете гамма-излучения. Измеряя, как эта тень смещается в течение года, в январе этого года группа The Tibet ASγ оценила величину межпланетного магнитного поля и показала, что результаты наблюдений почти в полтора раза расходятся с теорией потенциального магнитного поля. Это указывает на то, что некоторые приближения, необходимые для работы теории, на практике не выполняются.
Дмитрий Трунин
Он порождает радиоизлучение
Астрономы обнаружили нового кандидата во внесолнечный объект, обладающий магнитосферным радиационным поясом. Им стал ультрахолодный карлик LSR J1835+3259, порождающий вспышечное радиоизлучение за счет выбросов плазмы из пояса. Статья опубликована в журнале Science. Ультрахолодные карлики представляют собой маломассивные звезды и субзвездные объекты спектрального класса M6 и позднее. Обычно такие объекты спокойные в радиодиапазоне, однако часть из них способны порождать радиоизлучение на гигагерцовых частотах. Предполагается, что излучение может генерироваться за счет нестабильности электронно-циклотронного мазера, которая также объясняет радиоизлучение полярных сияний на планетах. Согласно альтернативной версии, оно возникает в результате синхротронных или гиросинхротронных процессов, которые идут в короне или радиационных поясах — областях внутри магнитосферы планеты, образующих магнитную ловушку для энергетических заряженных частиц (ими обладают Земля, Юпитер, Сатурн, Уран и Нептун, а также ультрахолодный карлик J1835+3259). Группа астрономов во главе с Хуаном Батистой Климентом (Juan Bautista Climent) из Университета Валенсии сообщила, что обнаружила второй пример радиационных поясов вне Солнечной системы — ими обладает объект LSR J1835+3259, расположенный в 18,4 светового года от Солнца в созвездии Лиры. Он считается коричневым карликом (однако может быть и ультрахолодным карликом класса M8.5) и обладает радиусом Юпитера и периодом вращения 2,84 часа. Наблюдения за объектом велись при помощи наземного радиоинтерферометра со сверхдлинной базой EVN (European VLBI Network) в июне 2021 года. Наблюдения за LSR J1835+3259 выявили два всплеска радиоизлучения, мощность которых на два порядка превышает полную мощность радиоизлучения сияний Юпитера. Ученые обнаружили у карлика протяженную магнитосферу со сложной морфологией, совместимой с наличием радиационного пояса. Зона излучения простирается на примерно 6,5 радиусов карлика от карлика. При этом оценочная индукция магнитного поля в радиационном поясе во время вспышек может составлять около 18 или 170 гаусс, а средняя энергия электронов — 3-8 мегаэлектронвольт (в предположении, что карлик обладает дипольным магнитным полем с индукцией 5 килогаусс в полярных областях). Предполагается, что радиоизлучение от радиационного пояса LSR J1835+3259 возникает, когда накопленная в нем плазма не может больше удерживаться из-за быстрого вращения карлика и выбрасывается, порождая магнитные пересоединения и запуская процесс ускорения электронов. Ранее мы рассказывали о том, как было впервые зафиксировано радиоизлучение от экзопланеты.