Физики подтвердили предсказание 50-летней давности для одномерной электронной жидкости

T. Yang et al. / Phys. Rev. Lett.
Физики из США и Швейцарии смоделировали одномерную электронную жидкость с помощью ультрахолодного газа атомов лития-6, а затем измерили динамический структурный фактор колебаний ее заряда и сравнили его с предсказаниями теории Томонаги-Латтинжера, разработанной в начале 1960-х годов. Авторы статьи утверждают, что ранее подобные измерения не проводились. Статья опубликована в Physical Review Letters, препринт работы выложен на сайте arXiv.org.
Чтобы описать трехмерные системы взаимодействующих фермионов, ученые используют теорию ферми-жидкости, построенную в 1956 году советским физиком-теоретиком Львом Ландау. Фермионы — это частицы с полуцелым спином, которые не могут одновременно находиться в одной и том же квантовом состоянии из-за принципа запрета Паули; в частности, к фермионам относятся электроны и молекулы гелия-3. В основе теории Ландау лежит понятие о коллективных возбуждениях — квазичастицах, которые ведут себя так же, как настоящие частицы, из которых состоит жидкость, однако отличаются от них массой, зарядом и другими параметрами.
Грубо говоря, электрон внутри ферми-жидкости «одевается» в шубу из соседних электронов и перестает свободно двигаться, хотя получившуюся конструкцию и можно рассматривать как квазичастицу. Теория ферми-жидкости Ландау позволяет описать сверхтекучесть гелия-3 и необычное поведение других квантовых жидкостей.
К сожалению, в одномерном случае теория Ландау перестает работать, поскольку квазичастицы в таких системах просто не могут возникнуть. В самом деле, электроны в одномерной системе могут двигаться либо вперед, либо назад, однако они не могут обойти своих соседей сбоку (конечно, они могут протуннелировать сквозь них, однако эти эффекты слабо влияют на динамику системы, и для простоты ими можно пренебречь). Если вывести из равновесия один из электронов, он начнет колебаться и толкать своих соседей, и по системе побежит волна взаимодействий, которая затронет практически все частицы.
Теория таких коллективных взаимодействий была разработана в начале 1960-х годов Синъитиро Томонагой и Хоакином Латтинжером; в настоящее время одномерные системы взаимодействующих фермионов называют жидкостями Томонаги-Латтинжера. Особенно интересно, что коллективные колебания заряда (голоны) и спинов (спиноны) в жидкости Томонаги-Латтинжера могут «расщепиться», то есть распространяться по жидкости независимо, хотя у исходных частиц эти характеристики неразрывно связаны. Величина этого расщепления тем больше, чем сильнее фермионы взаимодействуют между собой.
В последнее время одномерные системы, в которых может возникать жидкость Латтинжера, активно исследуются, однако многие теоретические предсказания теории Томонаги-Латтинжера до сих пор плохо проверены на практике. В частности, ученые увидели предсказанные теорией эффекты в органических проводниках, нанотрубках и квантовых проводах, но не смогли подробно их изучить, поскольку во всех этих системах невозможно управлять силой взаимодействия между фермионами. В то же время, для разработки новых нанометровых устройств понимать физику происходящих процессов очень важно.
Группа ученых под руководством Рэнди Хулета (Randy Hulet) смоделировала одномерную жидкость Латтинжера с помощью ультрахолодного конденсата атомов лития-6, а затем измерила, как структурный фактор колебаний заряда зависит от силы взаимодействия между частицами. Для этого физики поместили чуть больше ста тысяч атомов в трехмерную оптическую ловушку, которая возникает в месте пересечения трех инфракрасных лазеров (длина волны λ = 1064 нанометра). Затем исследователи углубили потенциал ловушки и «уплотнили» атомы, накладывая на систему компенсационные лазеры с вдвое меньшей длиной волны (λ = 532 нанометра). После этого ученые выключили компенсационные лазеры и вертикальный лазер, превратив трехмерную ловушку в двумерную. В результате этой операции облако атомов расщепилось на набор одномерных трубочек, каждая из которых содержала около 40 частиц. Конечная температура атомов в каждой из трубочек составляла примерно 200 нанокельвинов.
Затем ученые измерили динамический структурный фактор, который описывает коллективные колебания заряда (плотности) в получившихся одномерных жидкостях. Для этого физики использовали метод брэгговской спектроскопии — направляли на систему два лазерных луча с разными частотами, падающих на трубочки перпендикулярно их оси, а затем измеряли «сигнал» от возбужденных в трубочках колебаний плотности. «Сигнал» ученые определяли как сумму по положительным частям картины, полученной вычитанием исходного распределения плотности (картинка a) и распределения плотности после прикладывания лазеров (картинка b). Интенсивность «сигнала» зависит от частоты возбуждающих лазеров и угла между ними, а также пропорциональна полному поперечному моменту атомов в трубочках. Поэтому по максимуму ее распределения можно определить резонансную частоту коллективных колебаний в одномерной жидкости Латтинжера.
Дмитрий Трунин