Швейцарские инженеры разработали оригами-структуру, выдерживающую большую нагрузку в заданных направлениях, но при этом легко складывающуюся при нагрузке в другом направлении. Она представляет композит, состоящий из жестких и эластичных слоев, от организации которых зависят свойства всей конструкции. Разработчики продемонстрировали применение конструкции на примере дрона со складными и самопроизвольно выпрямляющимися плечами. Статья опубликована в журнале Science Robotics.
Инженеры нередко используют в своих конструкциях технику складывания, напоминающую оригами. Это позволяет экономить место при транспортировке и даже реализовывать необычные механизмы, например, преобразующие вращательное движение в поступательное. Но у такого подхода есть и недостатки. Как правило, такие конструкции состоят либо из жестких материалов и множества соединений, склонных к поломкам, либо гибких и неспособных сопротивляться сильным нагрузкам.
В начале 2018 года группа ученых из Швейцарии и США описала метод создания оригами-структур, совмещающих в себе жесткие и мягкие материалы, способных действовать в качестве пружины и блокироваться в одном или двух стабильных положениях. Теперь другая группа ученых под руководством Дарио Флореано (Dario Floreano) из Федеральной политехнической школы Лозанны развила эту идею и адаптировала подобные структуры для сильных нагрузок, а также создала несколько функциональных устройств на их основе.
Как и авторы предыдущей работы, исследователи использовали конструкцию, похожую на строение крыльев некоторых насекомых. Большую часть их крыла занимают жесткие фрагменты кутикулы, соединенные между собой эластичным белком резилином. В созданном инженерами искусственном аналоге роль жесткой основы играет полиметилметакрилат, более известный как оргстекло, а в качестве эластичного материала выступает силиконовый эластомер. Исследователи отмечают, что по своим механическим свойствам, например, модулю Юнга, эти материалы очень близки к своим природным аналогам.
Процесс создания конструкции заданной формы происходит следующим образом. Изначально на жесткую полимерную пластину толщиной полмиллиметра наносят тонкий клейкий слой. После этого лазерный луч выжигает ненужный клей на местах складывания, а также создает углубления в полидиметилсилоксане. Затем между двух таких пластин размещают предварительно растянутый эластомер толщиной 0,3 миллиметра и все слои соединяют в единый композит. В конце процесса пластины необходимо сломать по намеченным лазером линиям.
В результате образуется материал, который в местах складывания проявляет двойную жесткость. При небольшой нагрузке, не превышающей порог, заданный предварительно растянутым эластомером, материал не изгибается, а при превышении пороговой нагрузки он начинает обратимо изгибаться и возвращает исходную форму после прекращения нагрузки.
Инженеры создали на основе материала два демонстрационных устройства. Одно из них представляет собой захват, способный принимать два положения и сдавливать объекты с разной силой. Другой прототип представляет собой квадрокоптер со складными плечами, на концах которых расположены роторы. В разложенном положении пластины в плечах расположены под углом к друг другу, а также удерживаются у основания магнитами, что позволяет удерживать конструкцию дрона в полете в стабильном состоянии. Но для транспортировки или хранения плечи дрона можно сложить, сжав пластины каждого плеча. Если же их отпустить в таком положении, они самопроизвольно распрямятся в рабочее положение и будут готовы к полету. Кроме того, такая конструкция позволяет выдерживать довольно сильные удары без необратимых повреждений.
В прошлом году инженеры под руководством Дарио Флореано создали другой противоударный квадрокоптер. Его рама состояла из прочных, но эластичных деталей, прикрепленных к жесткому центральному ядру. Во время полета корпус дрона достаточно жесткий, но при столкновении с препятствием детали отделяются от ядра и обратимо деформируются.
Григорий Копиев
Он пригодится на Марсе, Луне и ледяных спутниках планет-гигантов
Инженеры разработали концепцию робота для будущих миссий по изучению пещер на Марсе, Луне и ледяных спутниках планет-гигантов. Проект ReachBot описывает устройство с несколькими конечностями, которые способны раскладываться и дотягиваться до удаленных точек, на которых можно закрепиться с помощью захвата с металлическими шипами, сообщается в отчете NASA. При поддержке Angie — первого российского веб-сервера С тех пор как орбитальные исследовательские аппараты подтвердили существование пещер под поверхностью Марса и Луны, ученые не перестают размышлять над их полноценным исследованием. Помимо ценной информации об истории формирования небесного тела, в пещерах, куда не проникают ультрафиолетовые солнечные лучи и космические заряженные частицы, могли бы сохраниться и следы внеземной жизни. До последнего времени все подвижные роботы, предназначенные для изучения других планет, разрабатывались с расчетом, что они будут передвигаться только по сравнительно ровной поверхности. Поэтому они имеют относительно простое четырех- или шестиколесное шасси, которое устойчиво и не требует много энергии, но, к сожалению, не позволяет передвигаться по крутым каменистым склонам и скалам, и потому не подходит для исследования пещер. Инженеры под руководством Марко Павоне (Marco Pavone) из Стэндфордского университета уже несколько лет работают над многоэтапным проектом ReachBot для NASA, развивающим концепцию робота, способного перемещаться по пещерам и скалам со сложным рельефом, недоступным для других видов роботов при разных уровнях гравитации. Его главная особенность заключается в необычном способе передвижения. Вместо колес или ног у него есть несколько гибких удлиняющихся конечностей, на конце которых располагаются захваты с множеством мелких металлических шипов, которые цепляются за малейшие неровности на каменной поверхности. Аналогичный способ удержания на вертикальных поверхностях применялся в прототипе робота-скалолаза LEMUR, разработанном Лабораторией реактивного движения NASA. За счет металлических шипов робот может удерживать свое положение, распределив свой вес между несколькими конечностями, пока подыскивает следующую точку опоры для одной из них. Ожидается, что ReachBot сможет передвигаться не только по стенам и потолку, но и по полу как обычный ходячий робот. Однако на данной стадии проектирования конкретной конструкции для конечностей еще нет. Разработчики оценили параметры робота для миссии по исследованию марсианской лавовой трубки с высотой от пола до потолка порядка 30 метров. Это должно быть устройство массой около 10 килограмм, с восемью конечностями, способными развертываться до 20 метров в длину, оборудованное камерами и лидаром для навигации и прокладывания маршрута, а также для картографирования окружения. На предыдущих этапах были разработаны алгоритмы движения робота на плоскости, а также построен примитивный прототип ReachBot. В качестве четырех конечностей на нем используются стальные измерительные рулетки, оснащенные механизмом поворота, который позволяет «наводить» их на объект. После чего другой механизм раскручивает рулетку, на конце которой расположен захват с металлическими шипами. Робот умеет определять положение предметов вокруг с помощью визуальных меток, дотягиваться до них конечностями, ухватываться с помощью захватов и подтягивать себя в нужном направлении. В будущем разработчики планируют построить версию, которая способна двигаться в трехмерном пространстве. https://www.youtube.com/watch?v=Q6uvS_19OcA Существуют и другие концепции исследования инопланетных пещер, куда нет доступа колесных роботам. Одна из них предполагает использование нескольких четвероногих роботов Spot Mini. Каждый из членов группы будет отличаться от других, иметь свою роль и помогать другим.