Физики научились изменять пропускающую способность мембран для фильтрования воды на основе оксида графена. Оказалось, что уменьшать объем воды, которая может проходить через слой оксида графена микрометровой толщины, можно, подавая на него электрическое напряжение порядка одного вольта. Это приводит к ионизации молекул и снижению проницаемости мембраны, пишут ученые в Nature. Препринт статьи также доступен на arXiv.
Несмотря на то, что со времени открытия графена прошло более 10 лет, широкого применения в современных технологиях он пока так и не нашел. Среди всех возможных способов применения графена и других двумерных кристаллов одним из перспективных направлений считается использование этих материалов в качестве мембран для фильтрования или опреснения воды или разделения растворителей. Для этого ученые предлагают использовать не только сам графен, но и оксид графена — тоже гексагональную решетку из атомов углерода, но с небольшими порами и наличием на краях решетки кислородсодержащих функциональных групп, — а также другие двумерные материалы, например дисульфид молибдена. Однако пока была показана только принципиальная возможность работы подобных мембран, а надежного способа управления их свойствами предложено не было. Если полимерными мембранами можно управлять за счет изменения химической структуры, то у двумерных кристаллов возможности гибкого варьирования состава нет, поэтому для них необходимо придумывать какие-то другие способы.
Физики из Великобритании, Ирана и Бельгии под руководством Рауля Наира (Rahul R. Nair) из Манчестерского университета предложили для изменения проницаемости для воды мембран из оксида графена использовать ионизирующее электрическое поле. Для этого микрометровую мембрану из оксида графена зажимали между серебряным и золотым пористыми электродами, через которые могла проходить вода.
В сухом состоянии оксид графена не проводит электрический ток, но даже при небольшой влажности в мембране при определенном напряжении начинают формироваться проводящие нити (conducting filaments). В результате в воде образуется электрическое поле, которое приводит к ускорению ее диссоциации на ионы. Заряженные ионы гидратируются и образуют довольно крупные кластеры, что приводит к снижению скорости транспорта воды и, соответственно, таким образом уменьшается проницаемость мембраны. По словам авторов работы, к снижению проницаемости могут также приводить изменение смачивающих свойств и электрический разогрев, однако, согласно результатам проведенного анализа, оба этих механизма значительно слабее влияют на проницаемость мембраны для воды.
Поскольку образование проводящих нитей в мембране полностью обратимо, то при приложении отрицательного напряжения оксид графена можно перевести обратно в диэлектрическое состояние. Таким образом, меняя знак и величину подаваемого на электроды напряжения, физики могли менять степень ионизации воды и, соответственно, контролировать проницаемость мембраны. По словам авторов работы, расход воды таким образом можно менять от нуля до 150 грамм в час в пересчете на один квадратный метр мембраны.
Чтобы подробнее изучить, что происходит с водой в плоских каналах между слоями оксида графена при приложении к ним напряжения, ученые также смоделировали эту систему с помощью метода молекулярной динамики. Проведенные расчеты подтвердили, что ионизация воды с последующим образованием гидратных кластеров действительно приводит к уменьшению проницаемости графеновых мембран.
По словам авторов работы, предложенная ими методика управления проницаемостью мембран может оказаться полезной не только для фильтрации, но и например, для управляемой адсорбции воды из окружающей среды, поэтому найти свое применение такой подход может и в технологиях тканевой инженерии, при создании искусственных биологических систем и в нанофлюидных устройствах.
Стоит отметить, что устройства, которые ученые разрабатывают для очистки и опреснения воды, не ограничиваются только мембранами на основе двумерных кристаллов. Например, китайские химики предложили для опреснения воды использовать шероховатые полиамидные мембраны, которые они синтезировали с использованием механизма стабилизации химических паттернов, описанных Аланом Тьюрингом. А другая группа ученых синтезировала мембрану для очистки воды из наноструктурированного гидрогеля.
Александр Дубов
Устройство необходимо для разгона электронов в линейном ускорителе
Ученые из Института ядерной физики имени Будкера СО РАН создали ключевой элемент будущего источника синхротронного излучения СКИФ — клистрон, устройство, которое будет обеспечивать линейный ускоритель СКИФа током высокой мощности и сверхвысокой частоты, сообщили пресс-службы института и Минобрнауки РФ. Разработка стала вынужденным шагом: ученые планировали закупить клистроны в Японии, но из-за санкций фирма-подрядчик разорвала контракт. Проект «Сибирского кольцевого источника фотонов» (СКИФ) был утвержден в октябре 2019 года. Предполагается, что он будет генерировать синхротронное излучение с энергией фотонов от 1 до 100 килоэлектронвольт, которое будет использоваться для высокоточного рентгеноструктурного анализа, то изучения характера рассеяния излучения в толще образца. Такого рода «просвечивание» необходимо для многих задач в физике твердого тела, для разработки новых материалов, биомедицинских исследований. Подробнее об этом мы писали в материале «Больше синхротронов». Первый элемент СКИФа — линейный ускоритель (линак), который должен будет выдавать поток электронов с энергиями в 200 мегаэлектронвольт. Частицы разгоняются в нем благодаря переменным электрическим полям высокой частоты в СВЧ-резонаторах. В свою очередь, для питания СВЧ-резонаторов нужен электрический ток сверхвысокой частоты. Устройство, которое для этого предназначено, называется клистроном. В апреле 2023 года физики ИЯФа проверили в действии «первую ступень» линака, разогнав в нем электроны до энергии 30 мегаэлектронвольт. Однако, как пояснил N + 1 завлабораторией ИЯФ Алексей Левичев, в этом эксперименте использовался клистрон японской фирмы Canon, который институт успел получить до введения санкций. По его словам, для полноценной работы линака требуется четыре клистрона — три работающих и один резервный. Поскольку клистроны с нужными параметрами выпускают только в США, Франции и Японии, физикам пришлось создавать устройство самостоятельно. Клистрон представляет собой разновидность электронной лампы. В нем есть катод, где формируется поток электронов. Затем этот поток ускоряется и попадает во входной резонатор, где под действием электрического поля он становится дискретным — разбивается на сгустки, которые, в свою очередь, наводят ток сверхвысокой частоты в выходном резонаторе. Затем электроны «ловит» коллектор и цикл повторяется. Таким образом из непрерывного тока получают ток с частотой колебаний около 3 гигагерц. При испытаниях клистрона, созданного в ИЯФе была получена мощность в 50 мегаватт. По словам, директора ИЯФ Павла Логачева, создать собственный клистрон устройство они смогли благодаря благодаря тому, что Национальная ускорительная лаборатория SLAC подарила институту клистрон, и физики научились с ним работать. По его мнению, эта технология в дальнейшем будет востребована для других ускорительных установок в России — для синхротрона, источника комптоновского излучения в Сарове, источника нейтронов в Дубне. По словам Левичева, проект линейного ускорителя разрабатывался под параметры японского клистрона, поэтому собственная их установка в максимально возможной степени соответствует «исходнику». Однако соответствие все же не стопроцентное, поэтому, вероятнее всего, три сибирских клистрона будут основными, а японскому останется роль резервного. Испытания линака со всеми тремя клистронами и на проектной энергии в 200 мегаэлектронвольт сейчас планируются на лето 2024 года, добавил Левичев. Раньше мы рассказывали, как японским ученым удалось увидеть с помощью синхротрона двухщелевую самоинтерференцию одиночных электронов во времени.