Инженеры из Disney Research разработали систему, умеющую самостоятельно проектировать робота, способного выполнять заданные пользователям движения. Человеку необходимо задать траектории движения тела и нижних частей конечностей, после чего система создает подходящую конструкцию из библиотеки стандартных деталей, рассказывают авторы в журнале IEEE Transactions on Robotics.
Нередко промышленных и исследовательских роботов создают из стандартных модулей, состоящих из мотора, корпуса и соединительного механизма. Это позволяет решить сразу две задачи — упростить реконфигурацию робота, а в случае с серийным роботом еще и удешевить его производство. Тем не менее, для того, чтобы составить даже стандартные детали вместе и разработать способ управления ими нужен опытный инженер, а также много времени и усилий на сборку и отладку различных вариантов конструкции.
Группа инженеров из Disney Research под руководством Кацу Яманэ (Katsu Yamane) смогла упростить разработку роботов и научила алгоритм разрабатывать роботов как можно более простой конструкции, опираясь на высокоуровневое описание требуемых движений. Для начала авторы создали библиотеку из шести базовых модулей, состоящих из напечатанного на 3D-принтере корпуса, сервоприводов и соединительных механизмов, а также создали компьютерные модели этих элементов.
Пользователю не нужно самому составлять модули в единую конструкцию. Вместо этого он задает количество конечностей и желаемые траектории их концов, а также центра масс, который обычно расположен в корпусе робота. Для того, чтобы объединить модули в единого робота используется алгоритм, основанный на дереве поиска. Он берет модуль и дополняет его виртуальным продолжением, необходимым для того, чтобы достать до точек в пределах заданной траектории.
После этого алгоритм рассчитывает вклад модуля и виртуального продолжения и выбирает конструкцию, при котором вклад виртуальной части манипулятора будет минимальным. На следующих шагах алгоритм добавляет новые модули и проделывает аналогичную процедуру до момента, когда конструкция, состоящая только из настоящих модулей будет способна выполнять заданные движения.
Разработчики протестировали работу алгоритма на двух типах виртуальных моделей, которые часто используются в робототехнике — манипуляторах и шагающих роботах. После этого они создали два реальных робота, имеющих четыре ноги — роботизированный аналог собаки, а также тетраэдрального робота, стоящего на трех ногах и перемещающегося за счет еще одной.
В 2015 году инженеры из Disney Research создали похожую систему, позволяющую создавать роботов из стандартных модулей и умеющую в полуавтоматическом режиме создавать походку робота, учитывающую его морфологию. А недавно группа инженеров под руководством Кацу Яманэ представила другую разработку, позволяющую создателям роботов не разрабатывать алгоритмы для шагающих роботов. Они создали алгоритм и обучающую среду, позволяющие роботам самостоятельно учиться походке и подстраиваться под изменение количества и формы конечностей без участия человека.
Григорий Копиев
Он может ходить и менять форму
Инженеры из Швейцарии разработали модульного робота Mori3, состоящего из отдельных самостоятельных базовых элементов. Каждый из них имеет треугольную форму, может самостоятельно передвигаться и соединяться с другими элементами, образуя трехмерную конструкцию, которая способна изменять свою пространственную конфигурацию наподобие оригами. Чтобы продемонстрировать возможности Mori3, разработчики собрали из нескольких базовых элементов манипулятор, подвижную гусеницу и четырехногого робота. Статья опубликована в журнале Nature machine intelligence. Несмотря на то, что сконструированные для выполнения конкретных задач роботы выполняют работу более эффективно, иногда универсальность оказывается предпочтительнее специализации. Например, на борту космического корабля из-за ограничений на объем и массу полезной нагрузки, доставляемой с Земли, гораздо практичнее использовать одного универсального робота, способного выполнять множество задач, чем множество специализированных устройств. Один из подходов к созданию таких роботов состоит в модульности, когда несколько независимых элементов объединяют в одну конструкцию, которую можно реконфигурировать в зависимости от задачи. Например, в 2019 году группа инженеров под руководством Джейми Пайк (Jamie Paik) из Федеральной политехнической школы Лозанны продемонстрировала простого модульного робота, состоящего из одинаковых независимых прямоугольных элементов. Три соединенных вместе элемента образуют небольшого треугольного робота, способного ползать по поверхности, подпрыгивать, а также участвовать в совместных действиях с другими такими же роботами. В своей новой работе эта же группа инженеров продолжила развитие концепции модульности. Они разработали модульную систему Mori3, в основе которой лежат базовые элементы, играющие роль физических полигонов, из которых по аналогии с полигонами в компьютерной графике можно строить трехмерные объекты. Базовый полигон представляет собой треугольник и состоит из трех сторон, которые могут сокращаться или увеличивать длину с помощью электромоторов примерно на 7,5 процентов, за счет чего также изменяются углы между сторонами базового элемента и форма треугольника. Каждая сторона элемента оснащена механизмом стыковки, который позволяет ему автоматически соединяться с другими полигонами механически и электрически. При этом каждый треугольник способен передвигаться самостоятельно по плоской поверхности и менять направление движения с помощью тех же актуаторов, которые отвечают за изменение угла между двумя состыкованными элементами. Кроме этого каждый из них оснащен собственным элементом питания и платой управления, расположенной на пружинном подвесе в центре модуля. Всего инженеры построили 14 базовых роботреугольников из которых собрали несколько конструкций, чтобы продемонстрировать возможности системы. Например, одна из конструкций показывает возможность интерактивного управления конфигурацией модульного робота с помощью руки оператора, положение которой отслеживается сенсором. В зависимости от расстояния между рукой и датчиком робот, состоящий из шести элементов, переходит из плоской формы в колокообразную. Несмотря на то, что каждый отдельный модуль может самостоятельно передвигаться, происходит это довольно медленно и только на плоской поверхности. Однако, разработчики продемонстрировали, что из 10 модулей Mori3 можно собрать подобие транспортной ленты, способной катиться по поверхности, или четырехногого робота, который может передвигается переставляя последовательно четыре опоры. При этом робот может самостоятельно складываться в нужную конфигурацию из плоской формы, изменяя углы между отдельными модулями наподобие оригами. Кроме этого разработчики использовали несколько соединенных вместе модулей в качестве простейшего манипулятора, с помощью которого можно двигать предметы. https://www.youtube.com/watch?v=CD5Cj7RhxY0 Ранее мы рассказывали об исследовании взаимодействия в рое из 300 роботов, в котором инженерам удалось воспроизвести самопроизвольный реакционно-диффузионный механизм Тьюринга.