Ученые из Саудовской Аравии создали проводящий гидрогель на основе двумерного материала, способный растягиваться в десятки раз и восстанавливаться после повреждений, а также обладающий крайне высокой зависимостью сопротивления от растяжения и сжатия. Исследователи предлагают использовать это свойство для создания чувствительных датчиков механических нагрузок и создали несколько таких прототипов, сообщается в журнале Science Advances.
Сразу несколько технологических областей, например, носимая электроника и мягкая робототехника, нуждаются в материалах, которые можно использовать для создания электронных компонентов без снижения основных свойств конструкции. В частности, немало ученых создают эластичные проводящие материалы для датчиков растяжения. Но зачастую эти материалы не имеют достаточной чувствительности и их электромеханические свойства нестабильны и сильно меняются после небольшого количества растяжений.
Группа ученых под руководством Хусама Аль-Шарифа (Husam Alshareef) из Научно-технологического университета имени короля Абдаллы создали композитный материал, лишенный этих недостатков. Материал состоит из гидрогеля на основе поливинилового спирта, а также включений карбида титана, принадлежащего к классу материалов, известных как MXene. Это класс двумерных материалов, имеющих толщину в несколько атомных слоев и состоящих из карбидов, нитридов и карбонитридов переходных металлов. Авторы выбрали именно его по нескольким причинам. Известно, что благодаря тому, что при сжатии пластинок такого материала расстояние между ними и его проводимость меняются, его можно использовать в качестве чувствительного датчика давления. Кроме того, к поверхностному слою материала присоединяются функциональные группы, влияющие на свойства гидрогеля, например, гидроксильная группа, увеличивающая количество водородных связей в гидрогеле.
Благодаря комбинации двух разных классов материалов в одном композите ученые получили целый набор необычных свойств. Исследователи показали, как 2,5-сантиметровый фрагмент гидрогеля растягивается до 86 сантиметров без разрыва. Кроме того, наличие множества водородных связей позволяет гидрогелю восстанавливаться после разрывов и показывать после этого такую же растяжимость. Также материал обладает крайне высоким отношением изменения сопротивления к деформации при растяжении — 25 — а при сжатии это отношение вырастает до 80. Авторы утверждают, что чувствительность полученного ими сенсора механической нагрузки выше, чем у аналогичных сенсоров из работ других ученых.
Ученые обнаружили, что кроме измерения сжатия или растяжения материал можно использовать и для обнаружения простых жестов по его поверхности. Это происходит из-за того, что в зависимости от направления движения основным становится сжатие или растяжение материала, что приводит к изменению сопротивления в ту или иную сторону. Кроме того, поскольку из-за вязкоупругих свойств гидрогеля при высокой скорости он не может полностью восстановиться после деформации, это можно использовать для определения скорости, а не только направления движения по поверхности.
В 2016 году ученые сделали на основе гидрогеля другой материал, меняющий свои свойства при растяжении. Во время механической нагрузки материал увеличивает свое свечение, причем цвет свечения можно задавать на этапе создания с помощью добавок.
Григорий Копиев
Он хорошо активировал остеогенные клетки
Норвежские ученые разработали прототип костного трансплантата из аморфного фосфата кальция, который они получили из гидроксиапатита и яичной скорлупы. Он показал крайне хорошую иммуносовместимость и активацию остеогенных клеток в тканевых моделях. Исследование опубликовано в журнале Smart Materials in Medicine. В качестве трансплантата для замещения дефектов кости можно использовать кусок другой кости того же человека (аутологичный трансплантат), другого человека (аллогенный трансплантат), животного (ксеногенный трансплантат) или синтетические материалы. Несмотря на то, что аутогенные и аллогенные костные трансплантаты — золотой стандарт в таких операциях — содержат белки и клетки, которые способны формировать новую костную ткань, ограниченное количество доноров и риск переноса инфекции, равно как и техническая сложность аутогенной трансплантации, ограничивает применение этих методов. Изготовление ксеногенных полусинтетических трансплантатов сопряжено с высокими затратами на изготовление и с большими объемами медицинских отходов. Хаавард Йостейн Хауген (Håvard Jostein Haugen) из Университета Осло вместе с коллегами придумал концепцию синтетического костного трансплантата, который должен решить все эти проблемы. Они разработали метод изготовления аморфного фосфата кальция — основы искусственного синтетического костного трансплантата — с помощью синтетического гидроксиапатита и яичной скорлупы. Для этого яичную скорлупу сначала нагревали до 900 градусов Цельсия в течение часа, чтобы избавиться от органического компонента и превратить карбонат кальция (CaCO3) в оксид кальция (CaO). Полученные 5,55 грамма оксида кальция добавляли к 600 миллилитрам деионизированной воды и перемешивали со скоростью 200 оборотов в минуту. Затем к полученной суспензии добавляли 12,47 миллилитра раствора H3PO4, снова перемешивали с большей скоростью и вливали 91,5 миллилитра гидроксида натрия. Выпавший белый осадок фильтровали и промывали, а затем в пластиковых контейнерах погружали в жидкий азот. Физико-химические свойства полученного аморфного фосфата кальция оказались схожи с контрольным гидроксиапатитом, однако в экспериментальной версии ученые наблюдали большую устойчивость к рекристаллизации, которая затрудняет процесс приживления искусственной ткани к живой. Кроме того, цитотоксичность и гемолитическая активность частиц экспериментального фосфата кальция была не выше (а в некоторых тестах даже ниже), чем у контрольного материала. Также он проявлял достаточную иммуносовместимость. В двух- и трехмерных моделях мышиного зубного сосочка — эмбрионального зачатка зуба — частицы экспериментального фосфата кальция проявляли лучшую, по сравнению с контролем, активацию остеогенных клеток, которая оценивалась по экспрессии белков, ответственных за построение внеклеточного матрикса костной ткани (как органического, так и неорганического). Благодаря этому модели начинали приобретать структуру, напоминающую костную ткань. Это исследование показывает, что у яичной скорлупы как источника аморфного фосфата кальция есть потенциал использования в качестве костного полусинтетического трансплантата. При этом при его производстве практически не остается отходов. Если дефект кости небольшой, то можно воспользоваться титановыми пластинами в качестве имплантатов. Ученые придумали, как усовершенствовать их: они нанесли на них биопленку из бактерии Lactobacillus casei. Это помогло усилить регенерацию кости и защитить ее от метициллинрезистентного золотистого стафилококка.