Физики разработали многофункциональную поверхность для управления коллоидными объектами с помощью магнитного поля. Эта поверхность представляет собой массив микрометровых бороздок заполненных магнитной жидкостью. За счет действия магнитных и капиллярных сил при включении неоднородного магнитного поля меняется состояние жидкости, что позволяет управлять трением и адгезионными свойствами поверхности. Использовать эти структуры можно для управления движением частиц и капель, смешивания их между собой, а также перекачки жидкостей или очистки поверхностей от загрязнений, пишут ученые в Nature.
Ферромагнитная (или просто магнитная) жидкость представляет собой концентрированную суспензию магнитных наночастиц. Во внешнем магнитном поле капля такой суспензии сильно поляризуется, и из-за высокой магнитной восприимчивости на ее поверхности возникает упорядоченная система складок или иголок, которые выстраиваются вдоль линий напряженности магнитного поля и придают капле форму ежа.
Как правило, магнитные жидкости применяются в электронных устройствах для отвода тепла или снижения трения в приборах с магнитными элементами, однако также их пытаются использовать для медицинских целей и в оптических устройствах.
Группа физиков из США, Германии, Финляндии и Норвегии под руководством Джоанны Айзенберг (Joanna Aizenberg) из Гарвардского университета предложила использовать возможность смены состояния поверхности магнитной жидкости с помощью внешнего поля для создания многофункциональных поверхностей с изменяемым трением для управления движением коллоидных частиц. Для создания такого материала ученые нанесли магнитную жидкость (состоящую из частиц магнетита Fe3O4 в силиконовом масле) на текстурированную поверхность, разделенную на ячейки с помощью массива вертикальных стенок высотой в несколько десятков микрометров. Объем наносимой магнитной жидкости рассчитывался таким образом, что при отсутствии внешнего поля она полностью заполняла ячейки и на текстурой еще оставался небольшой ровный слой.
Варьируя внешнее магнитное поле, физики могли менять состояние капли магнитной жидкости: без поля жидкость растекалась по поверхности и при его включении принимала форму ежа. Неоднородное магнитное поле после включения действует на каплю в несколько стадий: сначала на ее поверхности возникают складки и иголки размером от 1 до 20 миллиметров, затем та жидкость, которая остается внутри ячеек, за счет давления со стороны магнитного поля выходит из пор наружу, но после этого из-за капиллярной пропитки растекается по поверхностным микроканалам наружу.
Таким образом на поверхности формируется рельеф с ярко выраженными миллиметровыми возвышениями и ямками, самые крупные из которых возникают в центре капли, а часть текстурированной поверхности, пропитанной жидкостью, оказывается открытой. Точный размер и форма особенностей рельефа на поверхности жидкости при этом зависят от ее собственных свойств (состава и концентрации магнитных частиц или вязкости и поверхностного натяжения жидкой среды), а также от свойств текстуры на поверхности — размеры и направления вертикальных стенок — и распределения и силы неоднородного магнитного поля.
Управляя состоянием магнитной жидкости, можно менять свойства всей поверхности: ее трение, поверхностное скольжение и адгезионные характеристики. Этот механизм ученые предложили использовать для управления коллоидными системами: движением частиц в водной среде, скоростью перемещения капель жидкости по поверхности, управляемой задержкой при смешивании нескольких капель различных водных растворов.
Кроме того, подобную текстурированную поверхность с магнитной жидкостью исследователи использовали как элемент нескольких устройств с подвижными деталями. Например, в одном из них действие магнитного поля на магнитную жидкость приводит к уменьшению трения и ускорению движения, а в другом с помощью магнитного поля можно перекачивать жидкость из одной емкости в другую.
Ученые отмечают, что каждый из предложенных примеров использования в дальнейшем может быть развит до полноценной технологии. Более того, у предложенного подхода много и других областей применения — от микрофлюидики до температурного контроля и очистки поверхностей от загрязнений.
Магнитные жидкости нередко предлагают использовать в качестве различных функциональных элементов различных механических и электрических устройств. Например, недавно американские физики разработали новый тип ионных двигателей для космических аппаратов, в которых рабочим телом выступает ионная магнитная жидкость. Благодаря этому удалось значительно сократить размеры двигателей.
Александр Дубов
Для этого физики упрятали почти четыре тонны жидкого ксенона под гору
Физики из коллаборации PandaX поделились результатами поиска следов электромагнитного взаимодействия обычной и темной материй. Для этого они искали отклонения в числе фотонов, рожденных в 3,7 тонны жидкого ксенона, от модельного предсказания. Отрицательный результат позволил наложить новые ограничения на все типы электромагнитных свойств гипотетических частиц. Исследование опубликовано в Nature. Поиск частиц темной материи — важнейшая задача, над которой физики и астрономы бьются уже почти век. Ее существование доказывают наблюдения за движением галактик и реликтовым излучением, но, несмотря на это, ученые до сих пор не понимают, из чего она состоит. Подробнее про темную материю читайте в материале «Невидимый цемент Вселенной». Среди прочего физики спорят, участвуют ли частицы темной материи в электромагнитном взаимодействии. Само определение «темная» подразумевает отрицательный ответ, однако, это может лишь значить, что такое взаимодействие слишком слабое, чтобы его могли зафиксировать общие наблюдения и эксперименты. Темная материя может состоять из миллизаряженных частиц или частиц с неточечным зарядом, либо частиц с малым электрическими или магнитными дипольными моментами, анапольными моментами и так далее. Поиск следов такого взаимодействия ведется на самых различных установках. Среди прочего, этим заняты физики из коллаборации PandaX-4T, работающие в зале B2 Китайской подземной лаборатории Цзиньпин. Ученые исследуют гипотетический процесс, при котором частица темной материи обменивается фотоном с ядром вещества. Модели предсказывают, что его итогом должно стать излучение, испущенное ускоренным ядром, и излучение, испущенное электронами, оторвавшимися от ядра. Чтобы отыскать такие пары сигналов, физики наполняли свой детектор 3,7 тонны жидкого ксенона, окруженного с двух сторон массивами фотоумножителей. При анализе данных, собранных за 86 дней измерений, ученые учитывали множество фоновых процессов: бета-распады прочих ядер, естественную радиоактивность материалов детектора, влияние солнечных нейтрино и так далее. В результате оказалось, что учета фоновых процессов достаточно, чтобы объяснить происхождение более тысячи событий, зарегистрированных установкой. Результат эксперимента накладывает ограничения на известные электромагнитные модели частиц темной материи в диапазоне масс от 20 до 40 гигаэлектронвольт. Так, из него следует, что зарядовый радиус этих частиц не превышает 1,9 × 10-10 фемтометра, миллизаряд — 1,9 × 10-10 заряда электрона, а электрический и дипольный моменты — 1,2 × 10-23 заряда электрона на сантиметр и 4,8 × 10-10 магнетона Бора, соответственно. Ограничению подвергся также анапольный момент: 1,6 × 10-33 квадратного сантиметра, что почти в три раза меньше, чем предел, полученных в предыдущем исследовании. В качестве иллюстрации авторы сравнили свои ограничения с таковыми для других распространенных заряженный частиц: нейтрона и нейтрино, полученными другими группами. Предел для зарядового радиуса темной частицы оказался на четыре порядка строже, чем у нейтрино, пределы электрического дипольного момента и анапольного момента заняли промежуточное положение между таковыми для нейтрона и нейтрино, а предел магнитного момента оказался на один порядок слабее нейтринного. Ранее мы писали про то, как предыдущая версия детектора PandaX-4T — PandaX-II, — наполненная 0,57 тонны жидкого ксенона, помогла ограничить самодействующую темную материю.