Японские исследователи создали актуатор, в основе которого лежит выращенная из клеток крыс мышечная ткань, приводимая в движение электрическими импульсами. Фрагменты мышечной ткани соединены с шарниром, который отклоняется при сокращении мышц. Статья с описанием разработки опубликована в Science Robotics.
Поскольку электромоторы сложно использовать в миниатюрных устройствах, исследователи разрабатывают в качестве альтернативы искусственные мышцы. Многие подобные разработки достаточно компактны, а некоторые из них даже не требуют собственного источника питания.
Исследователи под руководством Сёдзи Такэути (Shoji Takeuchi) из Токийского университета создали новый актуатор, использовав в качестве его основы клетки-миобласты, взятые из скелетной мышечной ткани крыс. Они поместили раствор с клетками и питательной средой для них в гидрогель, который затем залили в специальную форму. Через некоторое время в гидрогеле образовывалась мышечная ткань, способная сокращаться.
Кроме мышц исследователи создали механическую часть актуатора, которую авторы назвали скелетом. Этот скелет состоит из основной части, выполненной из полимера, а также шарнира. С двух сторон актуатора располагаются полоски мышечной ткани, жестко закрепленные с одного конца, а с другого связанные с шарниром с помощью париленовых пленок. За счет такой конструкции шарнир может двигаться в обе стороны, в зависимости от того, с какой стороны сокращается мышца.
Для управления сокращениями мышц исследователи расположили рядом с их концами электроды. Создаваемое между парой электродов электрическое поле заставляет сокращаться находящуюся рядом мышцу, но не влияет на мышцу с другой стороны актуатора. Исследователи продемонстрировали, что актуатор может отклонять шарнир почти на 90 градусов, и за счет этого выполнять различные движения, например, переносить небольшие объекты:
Авторы работы также протестировали долговечность мышц, и выяснили, что они сохраняют свою силу сокращения после недели использования, что было проблемой для предыдущих разработок в этой области.
В 2016 году американские ученые создали из клеток сердечной мышцы крыс робота-ската. Его мышцы активируются светом, за счет чего их работой можно управлять световыми импульсами, причем, если освещать только одну сторону робота, он будет поворачивать, а не просто плыть вперед.
Григорий Копиев
Алгоритм уменьшает время простоя на 78 процентов
Инженеры из Японии создали алгоритм машинного обучения, который автоматически стимулирует таракана-киборга больше двигаться и не позволяет ему долго оставаться в одном месте. Движение таракана контролируется с помощью электроимпульсов, генерируемых рюкзачком с системой дистанционного управления. Алгоритм увеличил на 70 процентов среднюю дистанцию, пройденную киборгом, и снизил время простоя таракана на 78 процентов. Статья опубликована в Cyborg and Bionic Systems. Миниатюрные роботы могут пригодиться в самых разных сферах: от ремонта авиационных двигателей до поиска выживших под завалами. Однако из-за недостаточной развитости компактной компонентной базы, в особенности актуаторов и источников питания, это все еще сложная инженерная задача, и большинство проектов остаются на уровне лабораторных прототипов. Одно из альтернативных решений состоит в использовании живых организмов, например, тараканов или даже летающих насекомых, которые уже обладают способностью к эффективному передвижению. В их организм внедряют электроды, через которые подключаются электронные модули, контролирующие перемещения насекомого за счет электростимуляции. Однако насекомые-киборги не полностью контролируются электронными системами. Они сохраняют свои особенности поведения, которые могут ограничивать их перемещение. Например, мадагаскарские свистящие тараканы, которые часто используются в экспериментах, склонны к снижению активности в ярко освещенных областях и при недостаточно высокой температуре. Кроме того, они предпочитают бегать вдоль стен, а не по открытым пространствам. Это приводит к сложностям в использовании насекомых-киборгов и требует оптимизации стимулирующих сигналов управления. Группа инженеров под руководством Кейсуке Морисима (Keisuke Morishima) из Университета Осаки внедрила в систему управления тараканом-киборгом алгоритм машинного обучения, который позволяет автоматически стимулировать передвижение насекомого, чтобы оно не оставалось на одном месте. Так же, как и предыдущие исследователи, инженеры использовали особь мадагаскарского шипящего таракана из-за его больших размеров, достигающих семи сантиметров. Для передачи стимулирующих сигналов в усикообразные органы в задней части таракана (церки) были имплантированы платиновые электроды, соединенные медными проводами с приклеенным на спину насекомого шестиграммовым рюкзачком с электронными компонентами. Данные о движении насекомого получают с помощью встроенного в рюкзак инерционного измерительного модуля, который с помощью акселерометра и гироскопа определяет текущие линейное ускорение и угловую скорость таракана. Эта информация по беспроводному каналу связи передается на персональный компьютер на вход алгоритма машинного обучения. Из данных, разбитых на окна по 1,5 секунды, извлекаются признаки, которые затем поступают на вход классификатора, определяющего двигается насекомое или нет. В случае, если таракан остается неподвижным дольше заданного времени, на его церки подаются электрические импульсы. Наиболее эффективным алгоритмом классификации в представленной задаче оказался метод опорных векторов. Для экспериментов инженеры построили арену в форме окружности, над которой разместили камеру для отслеживания реального положения насекомого. Без дополнительной электростимуляции три таракана, использованные в тестах, стремились оставаться в периферийной области у стен арены и избегали открытого пространства большую часть времени. Использование алгоритма и электростимуляции позволило снизить время простоя в среднем на 78 процентов, а время поиска пройденную дистанцию увеличить на 68 и 70 процентов соответственно. При этом среднее время электростимуляции для всех тараканов составило всего 3,4 секунды. Таким образом алгоритм позволяет снизить количество сигналов электростимуляции и тем самым предотвратить утомление животного. Ранее мы рассказывали про американских инженеров, которые разработали носимую поворотную монохромную камеру для жуков и микророботов. Благодаря ее небольшой массе, которая составляет менее четверти грамма, насекомые с ней могут свободно двигаться и балансировать.