Американские исследователи создали 3D-принтер, способный печатать на двигающейся поверхности, отслеживая ее перемещения с помощью компьютерного зрения. Разработчики продемонстрировали, как эта система может в автоматическом режиме создавать работающие электронные устройства прямо на коже человека, говорится в статье, опубликованной в журнале Advanced Materials.
Инженеры, занимающиеся разработкой носимой электроники, предлагают множество самых разных концепций, в том числе и печать устройств непосредственно на теле пользователя. Но современные 3D-принтеры сложно применять для этой задачи сразу по нескольким причинам. Во-первых, многие материалы для 3D-печати сильно разогреваются и на выходе из принтера имеют слишком высокую температуру, способную повредить кожу. Во-вторых, лишь немногие из материалов для 3D-печати могут проводить электрический ток. Третья проблема заключается в самих 3D-принтерах — они рассчитаны на то, что поверхность для печати будет неподвижна на протяжении всего процесса, а в случае с человеческим телом, например, рукой, этого практически невозможно достичь.
Ученые под руководством Майкла Макальпайна (Michael McAlpine) смогли решить эти проблемы и создали работающий прототип системы, способной создавать простые электронные устройства на теле человека. Разработанная учеными система представляет собой модифицированный дельта 3D-принтер. Для того, чтобы принтер мог печатать на двигающейся поверхности, исследователи установили на него несколько камер — две закреплены на раме и отслеживают процесс печати в целом, а еще две установлены рядом с печатающей головкой и служат для точного отслеживания места печати. Помимо этого разработчики использовали 3D-сканер, который создает объемную модель объекта, на котором будет вестись печать. На этот объект предварительно закрепляют метки, помогающие сканеру и камерам точно отслеживать его положение.
Ученым пришлось также разработать и специальный материал для печати. Он состоит из полиэтиленгликоля, воды и этанола, а также частиц серебра размером около десяти микрометров. Концентрации были подобраны таким образом, чтобы смесь получалась достаточно вязкой и не растекалась после выхода из сопла принтера, электропроводной, а также могла использоваться без сильного нагрева.
Разработчики продемонстрировали работу принтера на примере простого светодиода с контуром, который может получать энергию индуктивным способом от внешнего источника. Сначала специальное сопло принтера с пониженным давлением размещает плату со светодиодом на руке человека. После этого вокруг платы размещают маркеры для сканера и камер и производится сканирование. Затем система в автоматическом режиме печатает проводящие дорожки прямо на руке, отслеживая ее движения и компенсируя положение печатающей головки. В конце ролика можно видеть, как светодиод загорается при поднесении катушки с током:
Помимо печати электроники исследователи продемонстрировали другое применение 3D-принтера. Им удалось нанести на рану мыши гидрогель с живыми клетками, части из которых удалось выжить после печати.
Ранее эта же группа исследователей разработала несколько новых материалов для 3D-печати и напечатали из них работающий датчик давления. Наработки из этого исследования авторы затем использовали в новой работе.
Григорий Копиев
Американские инженеры изобрели простой способ высокоточной трехмерной печати, пригодный для создания микроэлектроники. Он основан на формировании каркаса, разные части которого имеют электрический заряд, после чего наносимый материал прилипает к противоположно заряженным местам. При помощи этого метода можно создавать объемные электрические схемы любой сложности, в частности тактильные датчики и датчики формы. Статья опубликована в журнале Nature Electronics.