Физики из Японии, Китая и США экспериментально подтвердили теоретически предсказанные топологические сверхпроводящие состояния на поверхности материала FeTe0,55Se0,45 и измерили величину их энергетической щели. По словам ученых, это поможет разработать квантовый компьютер, в котором состояния будут топологически защищены от распада, также это позволит подробно исследовать связанные майорановские состояния. Статья опубликована в Science.
Построить по-настоящему большие квантовые компьютеры ученым мешает декогеренция — неизбежное разрушение квантового состояния кубитов в результате взаимодействия друг с другом или со считывающим устройством. Конечно, физики уже придумали несколько способов, которые позволяют бороться с этой проблемой — например, ученые из IBM еще в 2015 году предложили схему процессора, который автоматически отслеживает ошибки, а спустя некоторое время этот способ проверили на практике. Наиболее оптимальный механизм коррекции ошибок, предложенный Алексеем Китаевым («торовый код», toric code) использовала при создании своего недавно анонсированного 72-кубитного компьютера группа ученых из Google. К сожалению, ни один из предложенных механизмов не позволяет избавиться от ошибок полностью. На практике вероятность ошибиться во время вычислений составляет около одного процента даже для самых совершенных квантовых компьютеров.
Тем не менее, есть еще один способ бороться с декогеренцией — построить такую систему, в которой состояния кубитов будут «защищены» некоторыми физическими законами, запрещающими им распадаться. Например, в топологическом сверхпроводнике должны сохраняться топологические инварианты сверхпроводящих состояний, и это служит эффективной «защитой» от их распада. Вообще говоря, топологические сверхпроводники начали исследовать совсем недавно, но ученые уже научились получать такие материалы. К сожалению, все они сложны в изготовлении и могут существовать только при очень низких температурах.
Группа ученых под руководством Пэна Чжана (Peng Zhang) и Шика Шина (Shik Shin) показала, что на поверхности материала на основе железа (FeTe0,55Se0,45) возникают топологические сверхпроводящие состояния, предсказанные ранее теоретически. При атмосферном давлении этот материал становится сверхпроводником при температуре около 15 кельвинов, а при определенных условиях температура перехода может увеличиться в два раза и достигнуть 30 кельвинов.
Чтобы доказать, что исследуемый материал обладает поверхностной топологической сверхпроводимостью, нужно увидеть в нем определенные явления. Во-первых, с помощью спектроскопических исследований нужно убедиться в том, что в материале возникают сверхпроводящие дираковские состояния. Подобные квазичастицы возникают, например, в графене, они аналогичны обычным электронам, которые движутся с большой скоростью, и подчиняются уравнению Дирака. Во-вторых, необходимо показать, что сверхпроводящие состояния поляризованы, то есть их спины «заперты» в направлении, перпендикулярном поверхности материала. В-третьих, следует проверить, что при температуре ниже критической состояния имеют энергетическую щель, величина которой не зависит от направления распространения квазичастиц.
Для начала ученые измерили энергетический спектр возникающих состояний, направляя на образец электромагнитные волны с s- и p-поляризацией. В p-поляризованных волнах электрическое поле лежит в плоскости, которую образует направление распространения волны и нормаль к поверхности, а у s-волн поле перпендикулярно этой плоскости. В результате в спектре p-волн исследователям удалось разглядеть конус Дирака (Dirac cone), который указывает на существование поверхностных дираковских частиц. В то же время, в спектре s-волн наблюдалась параболическая энергетическая зависимость, отвечающая квазичастицам из объема сверхпроводника.
Затем физики проверили, что возникающие сверхпроводящие состояния поляризованы. Для этого они исследовали интенсивность поглощенного света для двух срезов материала, отвечающих состояниям с противоположно направленными импульсами. На полученных экспериментальных зависимостях спины состояний также были направлены в противоположные стороны, что совпало с теоретическими предсказаниями и отвечало «запиранию» спина. Для состояний в объеме сверхпроводника ученые такую связь не заметили.
Наконец, ученые убедились в том, что при понижении температуры в спектре поверхностных состояний возникает энергетическая щель — это отвечало увеличению числа поглощенных фотонов при определенной энергии. Оказалось, что величина энергетической щели для поверхностных состояний составляет примерно 1,8 миллиэлектронвольт, что меньше аналогичной щели в спектре объемных электронов (4,2 миллиэлектронвольт) или дырок (2,5 миллиэлектронвольт).
Таким образом, в исследуемом материале действительно возникали сверхпроводящие поверхностные состояния. Ранее их существование подтвердить не удавалось из-за низкого разрешения спектроскопических инструментов. Ученые считают, что из-за возникающей естественным путем топологической сверхпроводимости этот материал будет полезен для создания квантовых компьютеров. Также они надеются увидеть и подробно исследовать в нем связанные майорановские состояния — квазичастицы, которые являются античастицами для самих себя.
Впервые состояния, которые ведут себя как майорановские частицы, обнаружили в июле прошлого года физики из Китая и США. Для этого они соединили слои сверхпроводящего ниобия и топологического изолятора с аномальным эффектом Холла, а затем наблюдали за колебаниями протекающего через образец тока при изменении внешнего магнитного поля.
Дмитрий Трунин
Ее до сих пор не удавалось зарегистрировать из-за акустичности, электро-нейтральности и отсутствия взаимодействия со светом
Физики экспериментально обнаружили в рутенате стронция Sr2RuO4 особый вид плазмона — демон Пайнса. Существование этой частицы было предсказано 67 лет назад, но из-за акустичности, электро-нейтральности и из-за отсутствия взаимодействия со светом ее до сих пор не удавалось зарегистрировать. Чтобы обнаружить демона, ученые применили метод спектроскопии характеристических потерь энергии электронов с разрешением по импульсу. Статья опубликована в журнале Nature. В 1952 году американские физики Дэвид Пайнс и Дэвид Бом описали коллективное поведение электронного газа в плазме, которое можно представить в виде квазичастицы, которую назвали плазмоном. Некоторые виды плазмонов уже научились регистрировать. В 1956 году Пайнс предположил, что в металлах могут существовать особые плазмоны, которые возникают при колебании электронов из разных зон в противофазе, что приводит к модуляции заселенности этих зон. Такие плазмоны назвали демонами: они не обладают ни массой, ни электрическим зарядом, да и со светом не взаимодействуют, — поэтому их крайне сложно зарегистрировать обычными методами. Группа физиков под руководством Петра Аббамонте (Peter Abbamonte), профессора Университета Иллинойса, изучала рутенат стронция Sr2RuO4. Этот металл обладает тремя вложенными зонами, пересекающими энергию Ферми, и поэтому может быть кандидатом на появление в нем демона. Ученые использовали метод электронной спектроскопии потерь энергии электронов с высоким разрешением по импульсу в режиме отражения. Этот метод позволяет измерять как поверхностные, так и объемные возбуждения в металле при ненулевой передаче импульса q, где сигнатура демона ожидалась наиболее четкой. Спектры потерь энергии электронов при большой передаче энергии и больших переданных импульсах — более 0,28 единиц обратной решетки — демонстрируют бесхарактерный энергонезависимый континуум. При малых переданных импульсах — q менее 0,16 единиц обратной решетки — ученые обнаружили широкую плазмонную особенность с максимумом в районе 1,2 электронвольта. Ученые обнаружили, что в низкоэнергетическом режиме, при q менее 0,08 единицы обратной решетки, метод выявляет акустическую моду. Дисперсия моды оказалась линейной в большом диапазоне импульсов, с групповой скоростью примерно в 100 раз больше скорости акустических фононов, которые распространяются со скоростью звука, но на три порядка меньше, чем для поверхностного плазмона, распространяющегося со скоростью, близкой к скорости света. Однако скорость моды находится в пределах 10 процентов от предсказанной расчетами скорости для демона. Как отмечают ученые, это возбуждение явно электронное и это как раз и есть демон, предсказанный Пайнсом 67 лет назад. Наблюдение демона стало возможным, благодаря высокому разрешению в миллиэлектронвольт в используемом методе. Однако для дальнейшего изучения демонов ученые предлагают повысить точность, используя высокоэнергетические электроны в сканирующем просвечивающем электронном микроскопе с высоким разрешением, работающем в расфокусированной конфигурации. Физики отмечают, что требуется новая теория демонов, которая точнее опишет полученные экспериментальные данные. Эти квазичастицы могут быть ответственны за возникновение сверхпроводимости и играть важную роль в низкоэнергетической физике многих многозонных металлах. Изучение демонов и других видов плазмонов важно для описания коллективного поведения электронов в разных веществах. Например, недавно мы писали как физикам удалось увидеть часть плазмонной матрицы плотности.