Химики обнаружили, что ксенон может образовывать устойчивые соединения с железом и никелем при давлении и температуре, соответствующим условиям ядра Земли. Образование таких соединений при экстремальных условиях может быть одной из причин пониженного содержания ксенона в атмосфере Земли, пишут ученые в Physical Review Letters.
Ксенон — первый из инертных газов, для которого были получены устойчивые химические соединения. Реагирует он только с сильными окислителями, в первую очередь с фтором. Сейчас для ксенона известны несколько устойчивых фторидов и оксидов, а также ряд органических соединений. Предполагалось, что при экстремальных условиях: очень высоких давлениях и температурах — ксенон также может реагировать и с металлами. Именно такие реакции, как считается, могут объяснять «парадокс пропавшего ксенона» — пониженное содержание ксенона в атмосфере Земли относительно других устойчивых инертных газов: аргона и криптона — и несоответствие его концентрации и изотопного состава химическому составу хондритовых метеоритов, который позволяет изучить концентрации элементов на ранних этапах развития Солнечной системы, когда формировались планеты.
Для проверки гипотезы о возможном существовании соединений ксенона с металлами ученые из США, Канады, Китая и России под руководством Элиссайоса Ставру (Elissaios Stavrou) из Ливерморской национальной лаборатории попробовали синтезировать эти вещества в лабораторных условиях. Эксперимент ученые проводили при термодинамических условиях, соответствующих ядру Земли: давлении 500 тысяч до 2 миллионов атмосфер и температуре от 1000 до 2500 градусов. Эксперимент проводился для трех смесей (ксенон-железо, ксенон-никель и ксенон-сплав железа и никеля состава Fe0,93Ni0,07) в ячейке с алмазными наковальнями при нагревании лазером. Полученные вещества авторы работы проанализировали с помощью рамановской спектроскопии в условиях протекающей реакции.
Оказалось, что в таких системах может происходить образование двух типов соединений: при взаимодействии ксенона с железом или железо-никелевым сплавом при температурах более 2000 градусов и давлениях более 2 миллионов атмосфер образуется соединение XeFe3 или Xe(Fe0,93Ni0,07)3 с орторомбической структурой, где кристаллическая ячейка имеет форму прямоугольного параллелепипеда, а с никелем ксенон образует кубический кристалл аналогичного состава XeNi3, но при более низких температурах и давлениях: 1,5 миллиона атмосфер и 1500 градусов Цельсия.
Для подтверждения экспериментальных данных ученые провели численный расчет термодинамических величин, которые объясняют приоритетное образование той или иной кристаллической структуры в каждом случае, а также рассчитали карты распределения плотности зарядов в кристаллах при экстремальных условиях.
Возможность образования соединений ксенона с металлами подтверждает гипотезу о вероятной причине понижения концентрации ксенона за счет образования соединений с металлами и объясняется перестройкой электронной структуры металлов при сверхвысоких давлениях. Авторы работы отмечают, что для того, чтобы такая реакция вообще прошла, как у никеля, так и у железа при повышении давления должна сильно увеличиваться их электроотрицательность, в результате чего они приобретают свойства окислителей.
По словам химиков, результаты работы показательны и как пример того, как в экстремальных условиях даже электроположительные металлы могут выступать в роли окислителей и образовывать анионы.
Ученые отмечают, что несмотря на первое экспериментальное подтверждение возможности образования соединений железа и никеля с ксеноном, все же вряд ли этот процесс происходил в процессе формирования земного ядра, потому что эта химическая реакция все же требует в несколько раз больших давлений, чем наблюдались тогда. Тем не менее, образование таких соединений могло быть одним из нескольких этапов многостадийного процесса, при котором сначала ксенон растворялся в расплавленном металле, после чего при увеличении давления — уже формировал устойчивые соединения.
Отметим, что и некоторые другие соединения ксенона тоже были получены лишь при сверхвысоких давлениях. В частности, почти все оксиды устойчивы лишь при давлении больше 500 тысяч атмосфер.
Александр Дубов
Обычно для него нужны монокристаллы чуть меньше миллиметра
Химики из Японии применили лазер на свободных электронах для проведения рентгеноструктурного анализа молекулы родамина-6G. Благодаря этому анализ удалось провести на небольших кристаллах, а точность определения структуры оказалась не меньше, чем при применении электронной дифракции. Исследование опубликовано в Nature Chemistry.