Переизлучающие пигменты стали концентратором света для солнечных батарей

Ученые предложили новую конструкцию солнечного концентратора, позволяющего собирать свет с большой площади на небольшую солнечную панель из эффективного, но дорогого материала. В нем используется два пигмента, один из которых поглощает свет и переизлучает на второй, который уже переизлучает свет на солнечную панель, сообщается в журнале Nature Communications.

Кремниевые солнечные батареи достаточно дешевы, но они имеют ограниченный коэффициент полезного действия. Из-за этого ученые разрабатывают альтернативные материалы для солнечных панелей с гораздо большим теоретическим коэффициентом полезного действия, но они они также гораздо дороже в производстве. Для того, чтобы снизить стоимость таких панелей до экономически целесообразного уровня, инженеры предлагают использовать небольшие панели и концентрировать на них свет с гораздо большей площади. Помимо оптических концентраторов некоторые исследователи предлагают использовать люминесцентные концентраторы, которые поглощают свет и переизлучают его на солнечную панель.

Исследователи под руководством Питера Валла (Peter Walla) из Брауншвейгского технического университета предложили новую конструкцию для люминесцентных концентраторов. Солнечная панель располагается в торце устройства, большую часть которого занимает полимер с пигментами. Ученые решили использовать схему с двумя флуоресцентными пигментами — донором и акцептором. Молекулы акцепторы сильно вытянуты и в основном излучают свет перпендикулярно, в отличие от молекул донора, излучающего более равномерно. В этой схеме пигменты-доноры располагаются в полимере хаотично, а акцепторы ориентированы вдоль плоскости солнечной панели. За счет этого доноры поглощают солнечный свет, переизлучают и этот свет попадает на молекулы акцептора, который, в свою очередь, тоже излучает в сторону солнечной панели или обратную, на которой расположена отражающая поверхность.

Существуют похожие разработки, в которых пигменты предлагается ориентировать с помощью электрического поля, но это сложно и не всегда позволяет добиться результата. Ученые выбрали более простой метод ориентации пигментов — с помощью растяжения полимера в котором они находятся. Для этого исследователи проанализировали множество веществ и выбрали два пигмента, один из которых сильно ориентируется при растяжении полимера, а второй практически не меняет свое положение даже при растяжении на 400 процентов. Интересно, что несмотря на такие сильные различия в свойствах оба пигмента относятся к одной группе кумаринов. Излучение акцепторного пигмента, излучающего в сторону солнечной панели, имеет длину волны около 520 нанометров, что совпадает с максимумом поглощения соединения InGaP, на базе которых сегодня разрабатываются очень эффективные солнечные панели.

Исследователи протестировали разные концентрации пигментов и выбрали соотношение молекул донора к молекулам акцептора десять к одному. Ученые показали, что такое устройство может иметь квантовую эффективность перенаправления света определенной длины волны на уровне 80 процентов. Они также предложили создавать многослойные солнечные панели с такими концентраторами, в которых каждый слой будет содержать разные пигменты, поглощающие свет определенного диапазона.

В прошлом году ученые предложили повышать диапазон углов падающего света для солнечных панелей с помощью материала с напоминающей крылья бабочки структурой. Такая структура позволила повысить эффективности поглощения света примерно в два раза.

Григорий Копиев

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Муравьиная кислота помогла солнечным элементам стать эффективней и стабильней

Материаловеды выяснили, как соли муравьиной кислоты улучшают эффективность и стабильность солнечных элементов. Оказалось, ионы формиата заполняют вакансии иода на границе перовскитных кристаллов, а также замедляют скорость кристаллизации перовскита, поэтому вместо множества мелких кристаллитов формируются один крупный. Полученные солнечные элементы продемонстрировали эффективность в 25, 6 процента. Результаты исследования опубликованы в журнале Nature. Эффективность солнечных элементов на основе смешанных свинцово-галогенидных перовскитов всего за десять лет увеличилась с 3,8 до 25,5 процента. Такие солнечные элементы дешевы и просты в получении, а еще их можно делать полупрозрачными и использовать в качестве верхней части тандемного солнечного элемента. Чаще всего в солнечных элементах используют перовскиты состава MAx(FA)1-хPbI3, где MA и FA — органические однозарядные катионы метиламмония и формамидиния. Для повышения стабильности и эффективности часть метиламмония заменяют на цезий, а часть иода — на хлор и бром. С недавних пор ученые стали добавлять в перовскитную решетку еще и анионы формиатов (солей муравьиной кислоты), которые стабилизируют перовскиты даже лучше, чем анионы хлора и брома —  например, в феврале мы писали о работе китайских химиков, которые смогли с помощью муравьиной кислоты вырастить рекордно большие монокристаллы для фотодетектора. Но четкого понимания механизма происходящих процессов у ученых до сих пор не было. В одних работах писали, что формиат помогает контролировать рост перовскитных кристаллов, в других — что главная причина в предотвращении фазовой сегрегации (разделении разных подтипов катионов и анионов в пространстве, в результате чего перовскитная пленка становится неоднородной). Разобраться в вопросе смогли китайские, шведские, корейские и швейцарские ученые под руководством Майкла Гретцеля (Michael Grätzel) из Федеральной Политехнической Школы Лозанны и Джин Йонга Кима (Jin Young Kim) из Ульсанского Национального Института Науки и Технологии. Они работали с перовскитом состава FAPbI3, в который добавляли от одного до пяти мольных процентов формиата формамидиния FAHCOO. На снимках сканирующей электронной микроскопии видно, что добавки формиата помогают получить перовскитные кристаллиты большего размера — до двух микрометров. Метод рентгеновской дифракции подтвердил, что пленки с формиатом имеют лучшую кристалличность — то есть процент аморфного перовскита в них ниже. Кроме того в пленках с формиатом полностью отсутствовала фаза δ-FAPbI3, в которую основная фаза, α- FAPbI3, постепенно превращается под действием следов влаги. Перовскит δ-FAPbI3 не фотоактивен, поэтому чем ниже его содержание в пленке, тем лучше для будущего солнечного элемента. Самые качественные пленки получились с добавками двух мольных процентов формиата. При более высоких концентрациях формиата кристаллиты перовскита становились разупорядоченными.