Ученые из США и Нидерландов объединили в программируемый процессор два одноэлектронных спиновых кубита, основанных на квантовых точках, и показали, что с его помощью можно реализовать простейшие квантовые алгоритмы. В качестве примера исследователи использовали алгоритмы Дойча-Йожи и Гровера. Статья об этом опубликована в Nature.
В настоящее время физики хорошо умеют контролировать отдельные кубиты — другими словами, они могут достаточно долго удерживать кубиты в когерентных состояниях и проводить измерения без разрушения когерентности. Тем не менее, настоящий квантовый компьютер, который сравнится с обычными компьютерами или даже превзойдет их по вычислительной мощности, должен одновременно оперировать большим числом кубитов. В то же время, чем больше кубитов входит в состав квантового компьютера, тем больше ошибок возникает из-за интерференции отдельных кубитов (qubit crosstalk) и утечек состояния (state leakage); кроме того, значительно увеличиваются затраты на калибровку оборудования и поддержание когерентности. Поэтому для достижения квантового превосходства необходимо решить проблему масштабирования квантовых компьютеров, то есть научиться удерживать контроль над системой при увеличении числа кубитов.
Стоит заметить, что определенного прогресса ученые в этой области уже добились. Например, группа физиков под руководством Михаила Лукина построила 51-кубитный квантовый компьютер, в котором кубитами служили нейтральные атомы рубидия-87 в оптической ловушке. Интересно, что ученые не просто изготовили компьютер, но исследовали с его помощью модель Изинга и открыли в ней новый эффект. Похожим способом, но с использованием атомов иттербия-171, другой группе ученых удалось создать вычислитель, состоящий из 53 кубитов. Кроме того, IBM обещает в скором времени запустить коммерческий 20-кубитный квантовый компьютер, доступный из облака.
На фоне этих достижений результат группы ученых под руководством Томаса Уотсона (Thomas Watson) смотрится не очень впечатляюще — в новой статье они описывают квантовый процессор, состоящий всего из двух кубитов. Однако здесь важно не столько количество кубитов, сколько устройство процессора: вместо атомов, пойманных в оптическую ловушку, исследователи работают со спиновыми кубитами, основанными на квантовых точках. Такими кубитами удобно управлять с помощью электрических токов, а самое главное, подобные системы сравнительно легко масштабировать. Например, в декабре 2017 года группа ученых под руководством Менно Вельдхорста (Menno Veldhorst), одного из соавторов новой работы, теоретически описала способ, с помощью которого можно объединить около 500 кубитов на основе квантовых точек и создать интегральную схему для квантового компьютера.
Изготовленный физиками квантовый процессор состоял из двух квантовых точек, находящихся в кремний-кремний-германиевом слое. Состояние одной точки исследователи считывали с помощью спин-селективного туннелирования (spin-selective tunnelling to a reservoir), а другой — с использованием контролируемого затвора (controlled-rotation gate). Кроме того, ученые контролировали кубиты с помощью кобальтовых магнитов, которые создавали градиент магнитного поля и вызывали дипольный спиновый резонанс точек. В результате физикам удалось создать между кубитами затвор с контролируемой фазой (controlled-phase gate, CZ-gate).
Совмещая онднокубитные и двухкубитные затворы, физики получили программируемый квантовый процессор — устройство, которое может выполнять определенные последовательности действий и обрабатывать входные данные в течение времени декогеренции системы. Чтобы показать, что этот процессор действительно работает, ученые реализовали с его помощью алгоритмы Дойча-Йожи (Deutsch-Josza) и поиска Гровера (Grover search).
Алгоритм Дойча-Йожи определяет, является ли некоторая функция двоичной переменной f постоянной или сбалансированной — в нашем случае постоянство задается соотношением f(0) = f(1) = 0 или f(0) = f(1) = 1, а сбалансированность определяется равенствами f(0) = 0, f(1) = 1 и f(0) = 1, f(1) = 0. Чтобы реализовать алгоритм, ученые поставили в соответствие каждому из четырех типов функции определенную последовательность импульсов и настроили процессор таким образом, чтобы по завершении работы первый кубит находился в состоянии |0>, если функция постоянна, и в состоянии |1>, если она сбалансированна.
Алгоритм Гровера находит такое значение x0 для заданной функции f, что f(x0) = 1 (при этом f(x) = 0 для всех остальных значений переменной). Поскольку в системе из двух кубитов x0 может принимать одно из четырех значений x0 = {00, 01, 10, 11}, все четыре типа функций ученые реализовали по отдельности. По окончании работы алгоритма система переводилась в состояние, для которого f(x0) = 1 (другими словами, вероятность обнаружить систему в этом состоянии равнялась одному).
В обоих случаях квантовый процессор выдавал именно такие результаты, которые ученые ожидали получить. Впрочем, измеренные вероятности состояний все-таки немного не дотягивали до идеальной ситуации из-за шума, однако после поправки на него эксперимент и теория в целом совпали.
Одновременно со статьей группы Уотсона в Nature была опубликована еще одна статья, посвященная вычислениям на основе квантовых точек. В ней группа ученых под руководством Джейсона Петты (Jason Petta) экспериментально показала, что пойманный в микроволновую полость фотон может быть связан со спином квантовой точки. Это позволяет наладить быструю связь между соседними кубитами, сохраняя когерентность системы.
Дмитрий Трунин
Калькулятор личных зивертов
Ходите ли вы по земле, летите на самолете или не дыша замерли в кабинете рентгенолога — вы находитесь под воздействием радиации. Впрочем, это не значит, что вам угрожает опасность — вопрос всегда в дозах. Предлагаем вам рассчитать свою ежегодную дозу радиации, а мы заодно расскажем, как она устроена.