Физики из Германии и США показали, что в системе сфер, помещенных в аквариум с периодически сдвигаемыми стенками, происходят явления, напоминающие фазовый переход при плавлении или кипении. В ходе эксперимента ученые наблюдали образование кластеров сфер с оптимальной упаковкой и рост средней плотности упаковки системы. Статья опубликована в Physical Review Letters.
Система, состоящая из большого числа одинаковых сфер, может совершать фазовые переходы между упорядоченным и неупорядоченным состояниями, а также хорошо описывает аморфные материалы. Например, с ее помощью можно моделировать тепловую коллоидную упаковку (thermal colloidal packing) или отталкивание в ионных растворах (hard sphere model). Состояние такой системы описывается плотностью упаковки ϕ, то есть отношением объема сфер к полному объему пространства, которое они занимают. Максимальное возможное значение в трехмерном пространстве ϕ ≈ 0,74 достигается для гранецентрированной кубической (ГЦК или FCC, face centered cubic) или гексагональной плотной (ГП или HCP, hexagonal close packing) упаковки. Подробнее про плотность оптимальной упаковки сфер можно прочитать в нашем материале «Один сломал, другой потерял».
Особенно интересны эксперименты по изучению зернистой упаковки сфер (granular packing), в которых частицы непрерывно касаются друг друга. В ходе этих экспериментов ученые вертикально встряхивают систему сфер, раскручивают ее на центрифуге, осаждают или подвергают тепловым циклам (thermal cycling). В результате плотность упаковки возрастает, но не достигает оптимального значения — вместо этого процесс уплотнения останавливается на величине 0,635 < ϕ < 0,655. Соответствующее состояние системы называют «случайная плотная упаковка» (random close packed state). Еще больше уплотнить сферы можно, встряхивая их в нескольких направлениях или циклически вращая.
В этой статье группа ученых под руководством Маттиаса Шрётера (Matthias Schröter) уплотняла систему из 49400 стеклянных шариков, периодически сдвигая вверх-вниз стенки «аквариума», в который они были насыпаны. Пространство между частицами было заполнено фталатом, в котором был растворен флуоресцентный краситель. Оптическая плотность жидкости и стекла, из которого были сделаны шарики, совпадают, поэтому свет практически не преломляется на их границе. Это позволяло ученым свободно видеть сквозь толщу частиц и делать фотографии поперечных срезов, высвечивая их с помощью лазера.
Как и ожидалось, в течение первых десяти тысяч циклов плотность упаковки сфер быстро (логарифмически) возрастала. Однако затем она неожиданно вышла на плато и оставалась постоянной в течение еще пятидесяти тысяч циклов. После этого параметр ϕ снова начал расти. По словам авторов, подобное поведение напоминает фазовые переходы первого рода (например, плавление твердых тел или кипение жидкости).
В самом деле, в начале третьей фазы (повторного роста) в объеме «жидкости» начинали появляться «зародыши» новой фазы — области, в которых сферы имеют ГЦК или ГП упаковку. К концу эксперимента размер таких образований достигал шестисот сфер, а суммарное число частиц, попавших в них, составляло около девяти процентов от полного числа частиц. Лучше всего отличие между разными фазами можно заметить по гистограмме локальной плотности — отношения объема сферы к объему ячейки Вороного, построенной для нее. Во время первых двух фаз такое распределение имеет только один максимум, но в завершающей фазе к нему добавляется второй пик, отвечающий оптимальной плотности упаковки.
Кроме того, исследователи построили зависимость вероятности роста образованного сферами кластера от его размера. Оказалось, что сравнительно мелкие образования с большей вероятностью распадаются, чем растут. Однако вокруг кластеров, в которые входит более десяти частиц, постепенно собираются все новые и новые сферы, и за счет этого средняя плотность упаковки повышается. Интересно, что около стенок такие кластеры не появляются.
Ученые отмечают, что в течение двух месяцев эксперимента около десяти процентов сфер «просочились» между подвижной и неподвижной стенкой аквариума, что могло вызвать повышенную подвижность частиц и усилить кристаллизацию.
В декабре прошлого года мы писали о том, как вращение упорядочило игральные кубики, насыпанные в банку. Оказалось, что в такой системе кубики довольно быстро достигают оптимальной упаковки, если ускорение, которое испытывают стенки банки во время поворотов, превышает половину ускорения свободного падения.
Дмитрий Трунин
Это поможет добывать руду и обрабатывать ядерные отходы
Европейские физики теоретически и экспериментально исследовали цикличные процессы всплытия и опускания на дно зерен арахиса в пиве, который называют «танец арахиса». Для этого они в течение двух с половиной часов снимали на камеру этот процесс в лаборатории. Анализируя эти результаты, ученые выяснили, что танец происходит из-за поверхностных свойств арахиса, на которых образование пузырьков предпочтительнее, чем на стенках стакана. Исследование опубликовано в Royal Society Open Science. В России распространен фокус, который показывают на вечеринках с шампанским. Для этого в полный бокал игристого напитка бросают изюминку, кусочек ананаса или дольку шоколада. Брошенное в жидкость тело сначала тонет, но затем всплывает под действием пузырьков газа, зародившихся на его краях. У поверхности пузырьки разрушаются и цикл повторяется. В аргентинских барах существует такая же традиция, только вместо шампанского там используют пиво, а вместо изюма — арахис. Там этот трюк получил название «танец арахиса». Несмотря на качественное понимание такого танца, физики плохо понимают его детали. Вместе с тем, такие процессы происходят не только на вечеринках или в барах, но и в природе: предполагается, что именно так плотный магнетит всплывает в магме. Похожим же образом горняки отделяют железо от руды. Разобраться в этом вопросе решили Луис Перейра (Luiz Pereira) из Университета Людвига Максимилиана и его коллеги из Англии, Германии и Франции. Для этого они провели экспериментальны с арахисом в пиве и подтвердили их результаты численными вычислениями. Физики наполняли резервуар размером 100 × 100 × 200 миллиметров одним литром лагера и опускали в него 13 обжаренных зерен арахиса Arachis hypogaea. Весь процесс они снимали на цифровую камеру. На начальном этапе все зерна плавали на поверхности из-за активного образования пузырей в перенасыщенном углекислом газом пиве. Примерно через 25-30 минут количество пузырьков уменьшалось и арахис начинал цикличное движение вверх и вниз под действием описанного выше механизма. Танец всех зерен прекратился примерно через 150 минут после начала эксперимента — количество газа, растворенного в пиве, опустилось ниже пороговой отметки. Для анализа результатов эксперимента авторы разбили задачу на три части: зарождение пузырьков, плавучесть и цикличность. Для этого им потребовалось знать капиллярные свойства системы, такие как плотность пива и газа, поверхностное натяжение, углы смачивания и так далее. Первое они рассчитали с помощью пивного онлайн калькулятора, второй — взяли из литературы, а для получения информации об углах ученым потребовалось провести дополнительные эксперименты по смачиванию пива стеклом и плоской частью арахиса. В результате физики смогли воспроизвести основные особенности поведения арахиса в пиве, которые они увидели в эксперименте. Так, они доказали, что арахис обладает поверхностью, на которой образование пузырей энергетически более выгодно, чем на стенках стакана. Если бы это было не так, танец арахиса был бы невозможен. Ученые отмечают, что арахис в пиве может служить модельной системой не только для задач геологии и добычи полезных ископаемых, но и в обработке ядерных отходов. Один литр пива — это не так много, когда речь идет о физическом эксперименте (впрочем, не только). То ли дело 30 литров! Именно столько потратили физики из Германии и Кореи, изучая стабильностью пивной пены при розливе «снизу-вверх».