Физики рассчитали структуру электронной и ядерной оболочек оганесона

P. Jerabek et al./ Physical Review Letters, 2018

Физики впервые количественно описали структуру ядерной и электронной оболочек оганесона — самого тяжелого из синтезированных на данный момент элементов. Из-за того, что у него очень короткий период полураспада, сделать это пока удалось только с помощью численного моделирования. С помощью него, например, удалось подтвердить частичный переход от выраженной структуры электронных оболочек к состоянию ферми-газа, особенно выраженный для валентного уровня, сообщают авторы статьи в Physical Review Letters.

Оганесон — самый тяжелый из синтезированных на данный момент элементов, официально включен в таблицу Менделеева в конце 2016 года. Его порядковый номер — 118, и он замыкает седьмой период таблицы Менделеева, то есть обладает структурой инертного газа. У единственного из хоть сколько-то устойчивых на данный момент нуклидов оганесона массовое число равно 294, и получают его слиянием ядер кальция-48 и калифорния-249. При этом из-за очень короткого периода полураспада (всего около 1 миллисекунды), свойства его электронной структуры невозможно изучить с помощью химических реакций (самый тяжелый из элементов, свойства которого удалось изучить химически, — это флеровий, период полураспада которого на три порядка больше и составляет около 2 секунд). Поэтому изучать химические свойства или хотя бы структуру электронных оболочек оганесона приходится косвенными методами или с помощью компьютерного моделирования и численного расчета.

Группа физиков из Новой Зеландии, Норвегии и США под руководством Витольда Назаревица (Witold Nazarewicz) из Университета штата Мичиган для исследования структуры электронной и ядерной оболочек оганесона использовала метод расчета функции локализации фермионов (электронов — для электронных оболочек и нуклонов — для ядерных). Значения функции, близкие к единице, соответствуют областям, в которых вероятность найти две одинаковых частицы близко друг другу очень мала, то есть фактически — областям разделения электронных оболочек. Если же функцию локализации нормировать на кинетическую энергию Томаса — Ферми, то значение в 1/2 будет соответствовать однородно распределенному ферми-газу. То есть чем более контрастным будет распределение функции локализации фермионов, тем более выраженная структура будет характерна для электронных оболочек.

Ожидалось, что в случае оганесона оболочечная структура начнет постепенно разрушаться и переходить в состояние ферми-газа. Чтобы убедиться в том, что такой переход действительно наблюдается, авторы работы сравнили структуру электронных оболочек, рассчитанную методом Хартри — Фока для нерелятивистского случая, и методом Хартри — Фока — Дирака с учетом релятивистских поправок. Полученные данные ученые сравнили с результатами аналогичных расчетов для инертных газов шестого и пятого периода: радона и ксенона.

Оказалось, что релятивистские эффекты действительно оказывают довольно значительное влияние на электронную структуру оганесона, очень сильно размывают ее, частично превращая в ферми-газ (особенно это заметно на валентном уровне). Они также сказываются и на некоторых физических свойствах оганесона, в частности увеличивают энергию ионизации сразу на 227 килоэлектронвольт. Для радона и ксенона же такие эффекты не наблюдаются, и релятивистская и нерелятивистская модели приводят к получению практически одинаковых результатов с хорошо сформированными электронными оболочками.

Полученные данные подтвердили рассчитанные в предыдущих работах очень большое спин-орбитальное расщепление верхней заполненной электронной оболочки (7p), которое достигает практически 10 электронвольт. Это расщепление объясняет и тот факт, что оганесон, несмотря на электронную структуру инертного газа, по своим химическим свойствам от инертных газов очень сильно отличается, и первый из 18 группы имеет положительную энергию сродства к электрону (то есть сам стремится электрон захватить).

Кроме электронных оболочек оганесона, физики также смоделировали и ядерные оболочки атома, рассчитав функции локализации протонов и нейтронов в ядре с помощью теории функционала плотности. Обнаружилось, что переход к состоянию ферми-газа наблюдается в сверхтяжелом ядре оганесона и для ядерных оболочек: кроме внешнего слоя, такое состояние характерно и для некоторых из внутренних оболочек. При этом нейтроны в ядре в целом оказались значительно менее локализованы и склонны к образованию газового состояния, чем протоны.

Авторы исследования утверждают, что на основе полученных ими результатов можно оценить химические и физические свойства даже неустойчивых сверхтяжелых элементов, и количественно оценить переход от оболочечной электронной структуры к состоянию электронного газа за счет релятивистских эффектов.

Недавно двое из авторов данной статьи использовали подобный подход для численного моделирования слияния двух тяжелых ядер. В результате им удалось обнаружить промежуточные осциллирующие состояния, устойчивость кластерной системы в которых определяет конечный продукт ядерной реакции.

Александр Дубов

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.