Американские ученые разработали метод получения сверхрешеток в двумерных искусственных коллоидных кристаллах, состоящих из золотых наночастиц различной формы. Добиться этого удалось, совместив традиционный метод полимерной литографии с использованием комплементарного связывания молекул ДНК, пишут ученые в Science.
Для кристаллов со сверхрешетками кроме основной периодической структуры характерно дополнительное упорядочение системы за счет периодического изменения какого-то дополнительно свойства кристалла с периодом, превосходящим период решетки. В обычных кристаллах таким параметром может быть смещение атома относительно его равновесной позиции, электрический потенциал или направление спина. В искусственных коллоидных кристаллах, состоящих из нано- или микрочастиц и в искусственных массивах, таким параметром может быть, например ориентация или положение частиц. Создание сверхрешеток и упорядоченных архитектур в искусственных системах дает возможность управлять оптическими, механическими и электронными свойствами таких систем, однако при синтезе сложно одновременно контролировать взаимодействие между двумя частицами и между частицей и поверхностью.
Группа американских ученых под руководством Чада Миркина (Chad A. Mirkin) из Северо-Западного университета предложила собирать многослойные двумерные решетки из золотых наночастиц с заданной архитектурой (в том числе сверхрешетки) на золотых поверхностях с использованием олигонуклеотидов — небольших участков молекул ДНК. В предложенной методике ученые совместили два подхода: литографию с нанометровым разрешением и метод самосборки, основанный на взаимодействии между нуклеотидами.
Сначала с помощью метода полимерной литографии, основанного на создании пор в слое полиметилметакрилата, к нужным участкам золотой подложки пришивали небольшие участки ДНК с известной последовательностью нуклеотидов. После этого комплементарные им одноцепочечные молекулы ДНК присоединяли к поверхности золотых наночастиц различной формы (в том числе анизотропные): в виде дисков, треугольников, шариков и кубиков размером от 60 до 200 нанометров. За счет образования связи между нуклеотидами наночастицы пришивались к поверхности, после чего матрица из полиметилметакрилата растворялась.
Варьируя состав нуклеотидов на подложке и наночастицах, а также размер пор в пленке полиметилметакрилата, химики управляли селективностью присоединения и ориентацией наночастиц на подложке. Кроме однослойных упорядоченных структур с помощью такого метода можно создавать и «многослойные» структуры, у которых в узлах решетки формируются столбики, состоящие из нескольких различных элементов, порядок которых тоже можно менять.
Отдельно авторы работы работы отмечают, что таким способом можно покрывать сверхрешетками из наночастиц достаточно большие поверхности. Уже сейчас ученые могут создавать упорядоченные массивы наночастиц площадью до 600 на 600 микрометров, и в дальнейшем эта площадь может быть увеличена. При этом с помощью традиционных методов сборки получить такие структуры очень тяжело даже на небольших площадях.
По словам ученых, с помощью такого подхода можно получать метаматериалы, в которых оптические свойства определяются образованием поверхностных плазмонов. За счет изменения расстояния между частицами, их ориентации, размера и формы, а также свойств растворителя, в котором находится такая система, можно управлять оптическими свойствами получаемых двумерных кристаллов. В частности, с помощью такого подхода можно будет получать метаматериалы, для которых можно динамически изменять длину волны поглощаемого света во всем видимом диапазоне. Подобные материалы могут затем быть использованы, например, для создания медицинских сенсоров.
В метаматериалах оптические свойства зависят не столько от химических свойств самого материала, сколько от структуры, которая позволяет, например, получать цветные голограммы или защищать пилотов от ослепления лазером. Подробнее о метаматериалах с необычными оптическими свойствами вы можете прочитать в нашем материале.
Александр Дубов
Сплав галлия и индия защитил батарейку от водяного пара, кислорода и этанола
Китайские материаловеды предложили запаивать литий-ионные аккумуляторы в гибких электронных устройствах жидким металлом. Жидкий сплав галлия и индия позволил изолировать ячейку от кислорода, водяного пара и этанола, не испортив при этом ее электрохимических свойств. Такая батарейка сохранила больше 70 процентов емкости после 500 циклов зарядки и разрядки и не потеряла свойств при деформации, пишут авторы статьи в Science. Чтобы аккумулятор работал достаточно долго, его функциональные компоненты: электроды и электролит — должны быть максимально изолированы от внешней среды. Тогда внутрь ячейки не будут попадать молекулы газов, в частности воды и кислорода, — и это позволит избежать окисления материалов и падения емкости батареи. Обычно в аккумуляторах для изоляции электрохимической ячейки используют металлы, такие как алюминий. Однако для гибких электронных устройствах, которые должны легко растягиваться и скручиваться, металлы с огромным модулем Юнга (порядка 1010 паскаль) не годятся, и батарейки в них обычно изолируют эластомерами — упругими полимерными материалами. Эластомеры гибкие, но у них обратная проблема: между подвижными полимерными цепочками образуются довольно крупные поры, через которые внутрь электрохимической ячейки свободнее проникают молекулы газов, из-за чего у батарейки быстрее падает емкость. В качестве компромиссного варианта материаловеды предлагают использовать комбинации из эластомеров и металлов, но пока совместить достаточную герметичность батарейки с гибкостью не удается. Китайские материаловеды под руководством Дэна Тао (Deng Tao) из Шанхайского университета Цзяотун предложили решить проблему герметичности аккумуляторной ячейки, запечатывая соединения вместо полимера жидким металлом. Поскольку у жидких металлов нет кристаллической структуры, они могут растягиваться и их эффективный модуль Юнга на несколько порядков ниже, чем даже у полимерных материалов. Из-за этого их довольно часто используют в гибкой электронике в других целях: для термостатирования, охлаждения или в качестве элементов электрических цепей. При этом, как и у твердых металлов в обычных аккумуляторах, у жидкометаллических сплавов очень маленькая пористость и они почти непроницаемы для молекул газов. Проницаемость для воды, как минимум, на два порядка меньше, чем у полимерных материалов, а для кислорода — минимум, на шесть порядков, и соизмерима с проницаемостью у твердых металлов. Чтобы проверить свою идею, исследователи взяли эвтектический сплав галлия и индия, которым запаяли гибкий литий-ионный аккумулятор. Аккумулятор состоял из трех слоев: снизу — гибкая подложка из полидиметилсилоксана, в середине — сама ячейка с оксид-марганцевым катодом, титанат-фосфатным анодом и водным электролитом, а сверху — еще одна пластина из полидиметилсилоксана. Нижняя и верхняя пластины были также покрыты стеклянными шариками, которые работали спейсерами и не давали слоям склеиться. Соединив три слоя между собой и изолировав электроды для предотвращения короткого замыкания, авторы затем заполнили пространство между гибкими пластинами жидким металлом — и получили готовый гибкий аккумулятор. По своим механическим свойствам он не отличался от такой же ячейки без жидкометаллического запаивания (то есть эффективный модуль Юнга изолирующего слоя оказался нулевым, и на поведение батарейки при деформации он не влиял). Чтобы убедиться, что и проницаемость для газа у жидкометаллического слоя низкая, ученые измерили электрохимические параметры аккумулятора после многократных циклов зарядки и разрядки. Оказалось, что без дополнительной механической нагрузки такой аккумулятор сохраняет около 90 процентов емкости после 140 циклов и примерно 72,5 процента — после 500 циклов. Измеренное падение емкости авторы связали с побочными реакциями внутри аккумулятора, а возможное влияние кислорода и водяного пара по сравнению в ними оказалось пренебрежимо малым. Кроме того, авторы проверили, как такая батарейка будет работать при деформации. Оказалось, что никакого измеримого влияния на емкость ни оказывают ни растяжение (до 20 процентов), ни изгиб (на углы до 60 градусов), ни скручивание (на углы до 90 градусов), ни комбинация этих видов деформаций. Авторы работы предполагают, что такие гибкие аккумуляторы можно будет использовать в том числе для создания гибких теплообменных устройств. Поэтому дополнительно ученые показали, что жидкометаллический изоляционный слой непроницаем еще и для этанола — рабочей жидкости в таких устройствах — и эффективно работает при нагревании. Ученые отмечают, что жидкометаллические сплавы также перспективны в качестве барьерных материалов и для беспроводной носимой электроники. Жидкометаллические сплавы материаловеды предлагают использовать не только для вспомогательных компонентов электронных устройств, но и в качестве их функциональных частей. Например, американские ученые собрали аккумулятор, в котором анод сделан из сплава натрия с калием, а катод — из жидких сплавов на основе галлия. А китайские химики — предложили делать из жидкого металла проводящие элементы гибких устройств.